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Approximate Projected Consensus for Convex
Intersection Computation: Convergence

Analysis and Critical Error Angle
Youcheng Lou, Guodong Shi, Karl Henrik Johansson, Fellow, IEEE, and Yiguang Hong, Senior Member, IEEE

Abstract—In this paper, we study an approximate projected
consensus algorithm for a network to cooperatively compute the
intersection of convex sets, where each set corresponds to one
network node. Instead of assuming exact convex projection that
each node can compute, we allow each node to compute an approx-
imate projection with respect to its own set. After receiving the
approximate projection information, nodes update their states by
weighted averaging with the neighbors over a directed and time-
varying communication graph. The approximate projections
are related to projection angle errors, which introduces state-
dependent disturbance in the iterative algorithm. Projection ac-
curacy conditions are presented for the considered algorithm to
converge. The results indicate how much projection accuracy is
required to ensure global consensus to a point in the intersection
set when the communication graph is uniformly jointly strongly
connected. In addition, we show that π/4 is a critical angle for the
error of the projection approximation to ensure the boundedness.
Finally, the results are illustrated by simulations.

Index Terms—Approximate projection, intersection computa-
tion, multi-agent systems, optimal consensus.

I. INTRODUCTION

D ISTRIBUTED analysis and control have drawn increas-
ing research attention in various areas of engineering,

physics, computer science, and social science. Collective tasks
can be accomplished cooperatively for a group of autonomous
agents via local information exchange and distributed protocol
design. Distributed solutions to some simple but global goals
such as consensus, formation, and aggregation have been ex-
tensively studied in the literature [8]–[15], [18]–[22]. Recently,
distributed optimization problems have also arisen due to its
wide applications in networked control systems and wireless
communication networks [23]–[30], [32]–[37].
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A standard distributed optimization formulation for a multi-
agent network is to cooperatively minimize a sum of convex
functions, where each component is known only by a particular
node. Subgradient-based incremental methods were established
via deterministic or randomized iteration, where each node is
assumed to be able to compute a local subgradient value of
its objective function [23]–[25], [27]–[29]. Non-subgradient-
based methods also showed up. For instance, a non-gradient-
based algorithm was proposed in [33], [34], where each node
starts at its own optimal solution and updates using a pairwise
equalizing protocol, and an augmented Lagrangian method was
introduced in [37].

If the optimal solution set of its own objective function can be
obtained for each node, the optimization problem can be con-
verted to a set intersection computation problem somehow [35],
[36]. Moreover, in many distributed optimization problems the
state of each node is restricted within a particular constrained
set, and then the intersection of these constraint sets becomes
important because it is where the global optimal solutions for
the network locate [30]. All of these lead to a question on
how to compute the intersection of several convex sets in a
distributed manner. In fact, convex intersection computation
problem is a classical problem in optimization [40]–[43]. An
extensive survey about the convex intersection computation
problem can be found in [43]. An “alternating projection al-
gorithm” was used to be a standard centralized solution, where
the projection is carried out alternatively onto each set [40]–
[42]. Several years ago, the “projected consensus algorithm”
was presented as a decentralized version of the alternating
projection algorithm, where each node alternatively projects
onto its own set and averages with its neighbors, with con-
vergence analysis under time-varying directed interconnections
[30]. Following this work, a flip-coin algorithm was introduced
when each node randomly chooses projection or averaging
based on Bernoulli processes, with almost sure convergence to
an optimal consensus [36]. A deterministic dynamical system
solution was then given in [35], where the network reaches a
global optimal consensus using simple continuous-time local
control laws. In all these algorithms, each node knows the exact
convex projection of its current state onto its objective set.

However, in many practical applications, the exact convex
projection is hard to compute due to measurement and com-
putation inaccuracy. The objective of this paper is to solve
the convex intersection problem when the exact projection
cannot be obtained and how much error can be tolerated by
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the optimization algorithm. The contribution of this paper is
summarized as follows:

• At first, we propose an approximate projected consensus
algorithm to solve the convex intersection computation
problem. Instead of assuming the exact convex projection,
each node can only compute an approximate projection
point located in a bounded convex projection cone de-
termined by the current state and a projection angle er-
ror. In fact, the approximate projection algorithm extends
the projected consensus algorithm, but it introduces a
challenging state-dependent disturbance in the iterative
algorithm.

• The communication graph for the distributed optimiza-
tion is supposed to be directed and time-varying. With
uniformly jointly strongly connected conditions, we show
that the whole network can achieve a global consensus
within the intersection of all convex sets when sufficient
projection accuracy can be guaranteed. Moreover, a nec-
essary and sufficient condition is given to ensure a global
intersection computation in a special case.

• The critical angle error of the projection approximation is
discussed if the angle is a constant. It is shown that π/4
is a critical angle error to ensure the boundedness of the
algorithm.

The paper is organized as follows. Section II gives some
basic concepts on graph theory and convex analysis. Section III
introduces a distributed model and formulates the problem of
interest. Section IV presents the main results of the proposed
approximate projected consensus algorithm, while Section V
provides all the proofs. Section VI gives some numerical
examples and, finally, Section VII shows some concluding
remarks.

II. PRELIMINARIES

In this section, we introduce preliminary knowledge on graph
theory [6] and convex analysis [2].

A digraph (directed graph) G = (V, E) is an ordered pair of
node set V = {1, 2, . . . , n} and arc set E ⊆ V × V . We call
node j a neighbor of node i if (j, i) ∈ E . We denote Ni as the
set of neighbors of node i, that is, Ni = {j ∈ V|(j, i) ∈ E}. In
this paper, we assume (i, i) ∈ E for all i. A path from i to j
in digraph G is an alternating sequence i1e1i2e2 · · · ip−1ep−1ip
of nodes ir, 1 ≤ r ≤ p and arcs er = (ir, ir+1) ∈ E , 1 ≤ r ≤
p− 1, i1 = i, ip = j. Graph G is said to be strongly connected
if there exists a path from i to j for each pair of nodes i, j ∈ V .

A set K ⊆ �m is said to be convex if λx+ (1− λ)y ∈ K
for any x, y ∈ K and 0 < λ < 1, and is said to be a convex
cone if λ1x+ λ2y ∈ K for any x, y ∈ K and λ1, λ2 ≥ 0. For
a closed convex set K in �m, we can associate to any x ∈
�m a unique element PK(x) ∈ K satisfying |x− PK(x)| =
infy∈K |x− y|, which is denoted as |x|K , where | · | denotes
the Euclidean norm and PK is the projection operator onto K.
For a closed convex set K, if x �∈ K, there is a supporting
hyperplane to K at PK(x) with normal direction x− PK(x).
The angle between vectors y and z is denoted as ∠(y, z) ∈
[0, π] with cos∠(y, z) = 〈y, z〉/(|y||z|), where 〈y, z〉 denotes
the Euclidean inner product of y and z.

The following properties hold for the projection operator PK .
Lemma 2.1: Let K be a closed convex set in �m. Then:

(i) |PK(x)− PK(y)| ≤ |x− y| for any x and y;
(ii) ||x|K − |y|K | ≤ |x− y| for any x and y;

(iii) PK(λx+(1−λ)PK(x))=PK(x) for any x and 0<λ<1;
(iv) |PK(x)−y|2≤|x−y|2−|x|2K for any x∈�m and y∈K.

Here (i) is the standard non-expansiveness property; (ii)
comes from Exercise 1.2 (c) on page 23 [3]; (iii) is a special
case of Proposition 1.3 on page 24 [3], and (iv) is taken from
Lemma 1 (b) in [30].

The next lemma can be found in [36].
Lemma 2.2: Let K and K0 ⊆ K be two closed convex sets

in �m. We have

|PK(x)|2K0
+ |x|2K ≤ |x|2K0

for any x.

A function f(·) : �m → � is said to be convex if f(λx+
(1− λ)y) ≤ λf(x) + (1− λ)f(y) for any x, y ∈ �m and 0 <
λ < 1. A function f is said to be concave if −f is convex. Here
is a useful lemma for the following analysis (see Example 3.16
on page 88 [4]).

Lemma 2.3: Let K be a closed convex set in �m. Then
f(z) = |z|K is a convex function.

III. PROBLEM FORMULATION

In this section, we introduce the intersection computation
problem and the approximate projected consensus algorithm.

Consider a network consisting of n agents. Each agent i
is associated with a set Xi ⊆ �m and Xi is known only
by agent i. All these sets have a nonempty intersection, i.e.,⋂n

i=1 Xi �= ∅. The objective of the network is to find a point in
the intersection set in a distributed way.

Remark 3.1: The intersection computation problem can be
equivalently converted into the following distributed optimiza-
tion problem: a group of n agents should reach a consensus and
cooperatively solve

min
x∈�m

n∑
i=1

fi(x)

where fi : �m → � is the cost function of agent i and
known only by agent i. The problems are equivalent if
Xi = {y|fi(y) = minx∈�m fi(x)}, 1 ≤ i ≤ n are nonempty
and have a nonempty intersection.

The communication over the network is described by
a sequence of digraphs, Gk = (V, E(k)), k ≥ 0 with V =
{1, 2, . . . , n}. Recall that node j is a neighbor of node i at time
k if there is an arc (j, i) ∈ E(k). Let Ni(k) denote the set of
neighbors of node i at time k, and aij(k) represent the weight
of arc (j, i) at time k.

A. Approximate Projection

Projection-based methods have been widely used to solve
various problems in the literature, e.g., in projected consen-
sus [30], convex intersection computation [41], [42], and dis-
tributed computation [5]. In most of the literature, the projection
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Fig. 1. Set marked by the shaded area is the approximate projection of v
onto K.

point PK(z) of z onto the closed convex set K is required to be
accurate in order to achieve desired convergence. In practice, it
is hard to obtain exact computation but the projection needs
to be computed approximately. We introduce the following
definition.

Definition 3.1: (Approximate Projection) Suppose K is a
closed convex set in �m and 0 < θ < π/2. Define

CK(v, θ) = v + {z| 〈z, PK(v)− v〉 ≥ |z||v|K cos θ}

H+
K(v) = {z| 〈v − PK(v), z〉 ≥ 〈v − PK(v), PK(v)〉} .

The approximate projection Pa
K(v, θ) of point v onto K with

approximate angle θ is defined as the following set:

Pa
K(v, θ) =

{
CK(v, θ)

⋂
H+

K(v), if v �∈ K;
{v}, if v ∈ K.

(1)

Remark 3.2: In biological and engineering systems, in many
cases the visual field of a given agent, i.e., a bird or a robot cam-
era, is a sector area in front of the agent [16], [17]. Therefore,
in this case, compared to the exact projection, the approximate
projection area Pa

K(v, θ) is much easier to obtain. Basically, the
approximate projection is an area which is closer to the convex
set of interest in certain sense, instead of a single point.

In fact, CK(v, θ)− v is a convex cone generated by all
vectors having angle with PK(v)− v less than θ and H+

K(v)
is a closed half-space containing point v with

HK(v)
Δ
= {z| 〈v − PK(v), z〉 = 〈v − PK(v), PK(v)〉}

a supporting hyperplane to K at PK(v) with normal direction
v − PK(v). Set Pa

K(v, θ) is illustrated in Fig. 1.
Remark 3.3: Since the exact projection may be hard to

obtain in practice, an approximate projection is used for its
estimation. As defined, when a point is not in the closed convex
set, its approximate projection onto the closed convex set is
based on a convex projection region containing an infinite
number of points.

Definition 3.2: The supporting approximate projection
Psa
K (v, θ) of point v onto K with approximate angle θ is

defined as

Psa
K (v, θ) =

{
CK(v, θ)

⋂
HK(v), if v �∈ K;

{v}, if v ∈ K.

Fig. 2. Approximate projected consensus algorithm.

According to Definition 3.2, for any y ∈ Pa
K(v, θ), we can

associate y with ŷ ∈ Psa
K (v, θ) such that

y = (1− β)v + βŷ for some 0 ≤ β ≤ 1. (2)

Moreover, it is easy to see that if y �= v, ŷ satisfying (2) is
unique.

B. Distributed Iterative Algorithm

To solve the intersection computation problem, we propose
the following approximate projected consensus algorithm:

xi(k + 1) =
∑

j∈Ni(k)

aij(k)P
a
j (k), i = 1, . . . , n, (3)

where P a
i (k) ∈ Pa

Xi
(xi(k), θi,k) for all i and k, and θi,k is a

given accuracy parameter for the angle error away from the
projection direction.

According to the definition of supporting approximate
projection, there exist 0 ≤ αi,k ≤ 1 and P sa

i (k) ∈
Psa
Xi

(xi(k), θi,k) such that

P a
i (k) = (1− αi,k)xi(k) + αi,kP

sa
i (k). (4)

Combining (3) and (4), we have

xi(k + 1) =
∑

j∈Ni(k)

aij(k)
(
(1− αj,k)xj(k) + αj,kP

sa
j (k)

)
(5)

where, if xi(k) �∈ Xi, P sa
i (k) ∈ HXi

(xi(k)), and ∠(P sa
i (k)−

xi(k), PXi
(xi(k))− xi(k)) ≤ θi,k. We illustrate the one-step

iteration process of algorithm (3) in Fig. 2.
Remark 3.4: Clearly, the “projected consensus algorithm”

presented in [30] is a special case of the approximate pro-
jected consensus algorithm discussed here when αi,k ≡ 1 and
θi,k ≡ 0. In fact, algorithm (3) can also be viewed as a dis-
turbed version of the projected consensus algorithm in [30]
with disturbance (projection error)

∑
j∈Ni(k)

aij(k)(Pj(k)−
P a
Xj

(xj(k))). Different from the conventional disturbance anal-
ysis, here the projection error is state-dependent, which brings
new challenge to the convergence analysis.
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Denote X0 =
⋂n

i=1 Xi. It is time to introduce our problem.
Definition 3.3: A global optimal consensus is achieved for

the approximate projected consensus algorithm if, for any ini-
tial condition xi(0) ∈ �m, i = 1, . . . , n, there exists x∗ ∈ X0

such that

lim
k→∞

xi(k) = x∗, i = 1, . . . , n.

Since a global optimal consensus x∗ necessarily belongs to
the intersection set X0, a possible algorithm to find a point in
X0 is to employ the approximate projected consensus algorithm
(3). We discuss the convergence of this algorithm in the next
section.

C. Assumptions

Here we list all the assumptions about the convexity, the arc
weights [29], [30], the connectivity [30], [35], the approximate
angle and the boundedness of convex sets.
A1 (Convexity) Xi, i = 1, . . . , n are closed convex sets.
A2 (Weights Rule) (i)

∑
j∈Ni(k)

aij(k) = 1 for all i and k;
(ii) There exists a constant 0 < η < 1 such that aij(k) ≥ η
for all i, k and j ∈ Ni(k).

A3 (Connectivity) The communication graph is uniformly
jointly strongly connected (UJSC), i.e., there exists a
positive integer T such that G([k, k + T )) is strongly con-
nected for k ≥ 0, where G([k, k + T )) denotes the union
graph with node set V and arc set

⋃
k≤s<k+T E(s).

A4 (Approximate Angle) 0 ≤ θi,k ≤ θ∗ < π/2 for all i and k.
A5 (Bounded Sets) Xi, i = 1, . . . , n are bounded sets.

Remark 3.5: Assumption A4 is reasonable since we usually
have a basically correct direction though we do not know what
is the exact direction, especially for a bounded closed convex
set. In fact, the assumption that the approximate angles are
uniformly less than π/2 is equivalent to lim supk→∞ θi,k <
π/2 for each i and hence, precludes the case there exist i0 and
time sequence {kr}∞r=0 such that lim supr→∞ θi0,kr

= π/2.

IV. MAIN RESULTS

In this section, we first present the main convergence re-
sults of the approximate projected consensus algorithm and
then consider the convergence rate problem, finally discuss the
critical angle error of the approximate projection. All proofs are
provided in the next section.

A. Convergence Results

Denote α−
k = min1≤i≤n αi,k, α+

k = max1≤i≤n αi,k, and
θ+k = max1≤i≤n θi,k, k ≥ 0.

Theorem 4.1: Suppose A1–A4 hold. Global optimal con-
sensus is achieved for the approximate projected consensus
algorithm if

∑∞
k=0 α

−
k = ∞ and

∑∞
k=0 α

+
k tan θ+k < ∞.

Remark 4.1: Theorem 4.1 gives robustness conditions on the
projection error to guarantee a global optimal consensus. In
fact, the projection accuracy and approximate angle conditions
can be satisfied easily in various situations, for example, αi,k =
O(1/kγ) and θi,k = O(1/kγ) for each i and 1/2 < γ ≤ 1.

Remark 4.2: Generally,
∑∞

k=0 α
−
k = ∞ is somewhat fun-

damental for the optimal consensus convergence (see Remark
4.5), while

∑∞
k=0 α

+
k tan θ+k < ∞ is key for guaranteeing the

boundedness of system states and then that of the disturbance
term caused by the approximate projection (see Lemma 5.4
and Remark 3.4). In most of subgradient-based algorithms
with subgradient corrupted by disturbance or stochastic noise,
usually the noise is assumed to be bounded or have bounded
variance [32], [38]. Under this setting, except the un-summable
stepsize condition, generally the square summable stepsize
condition is required to guarantee the optimal convergence. In
fact, the optimal consensus can also be guaranteed for our ap-
proximate algorithm under the conditions

∑∞
k=0 α

−
k = ∞ and∑∞

k=0(α
+
k )

2 < ∞ provided that the system states are bounded.
Remark 4.3: Compared to the convergence results given

in [30], Theorem 4.1 does not require the doubly stochas-
tic assumption on the arc weights aij(k) (

∑n
j=1 aij(k) =∑n

j=1 aji(k) = 1 for all i, k). This is important because the
double stochasticity is hard to guarantee for the arc weights in
a distributed way, especially when the communication between
agents is directed.

Moreover, the connectivity assumption in [30] requires that
G([k, k + T )) is a fixed graph for sufficiently large k, which
is more restrictive than our UJSC assumption. However, the
assumption in [30] can be relaxed to UJSC graphs, as indicated
by the authors.

Remark 4.4: If the arc weights are doubly stochastic, i.e.,∑n
j=1 aij(k) =

∑n
j=1 aji(k) = 1 for all i, k, the convergence

analysis of Theorem 4.1 for the optimal consensus can be
largely simplified. The simplified proof is provided in the next
section.

Moreover, clearly Theorem 4.1 relaxes the doubly stochastic
assumption as the general stochastic assumption. In our algo-
rithm all agents make the (approximate) projection in order
to get close to their own sets, while the weighted average
mechanism guarantees that all agents converge to their inter-
section set. Intuitively, the UJSC connectivity (without double
stochasticity) is enough to achieve the desired convergence
since all agents can get directly or indirectly the information
about all other sets over all time intervals with a certain length.

To investigate the necessity of the divergence condition
in Theorem 4.1, we present the following result under the
boundedness assumption, which shows a necessary projection
accuracy condition.

Theorem 4.2: Suppose A1–A5 hold, θi,k ≡ 0 and α+
k < 1

for all k. Then

i) Global optimal consensus is achieved for the approximate
projected consensus algorithm only if

∑∞
k=0 α

+
k = ∞;

ii) If
∑∞

k=0 α
+
k < ∞, then, for initial condition xi(0) = z∗,

i = 1, . . . , n with |z∗|X0
>
∑∞

k=0 α
+
k d

∗/
∏∞

k=0(1−α+
k ),

there exists y∗ = y∗(z∗) �∈ X0 such that limk→∞ xi(k) =
y∗, ∀i, where d∗ = supω1,ω2∈

⋃n

i=1
Xi

|ω1 − ω2|.

Remark 4.5: Suppose A1–A5 hold, θi,k ≡ 0 and there exists
a sequence {αk}∞k=0 with αk < 1 for k ≥ 0 such that αi,k =
αj,k = αk for each i, j and k. Then from Theorems 4.1 and 4.2,
the global optimal consensus is achieved for the approximate
projected consensus algorithm if and only if

∑∞
k=0 αk = ∞.
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B. Discussions: Convergence Rate

The preceding two theorems provide the sufficient conditions
guaranteeing the optimal consensus. In this subsection, we
discuss the convergence rate problem. The authors in [29]
provide convergence bound for distributed sum objective func-
tion optimization problem in term of the objective function
iteration value and the optimal value for the doubly stochastic
graphs and constant stepsizes, while [38] provides various sharp
convergence bounds as a function of the network size and
topology for the distributed dual averaging algorithm developed
by the authors.

Under the exact projection environment, that is, whenαi,k≡1
and θi,k ≡ 0, the authors in [30] show that if the communica-
tion graph is completely connected with uniform weights and
the nonempty intersection set has an interior point, then the
network achieves an optimal consensus with exponential con-
vergence rate. However, the convergence rate estimate problem
for general directed graphs is still open. The following example
illustrates that the interior assumption is a basic assumption
guaranteeing the exponential convergence rate.

Example 4.1: Consider a network consisting of two agents
1, 2 in �2. Their respective convex sets are the unit balls with
centers (−1, 0)T and (1, 0)T (and hence, X0 = {(0, 0)T }). The
communication graph is fixed as the complete graph on the two
nodes. Suppose aij = 1/2, i, j = 1, 2. Here we assume αi,k ≡
1 and θi,k ≡ 0. Let the initial condition be x1(0) = x2(0) =
(0, b)T , b > 0 (see Fig. 3).

We find from Theorem 4.1 that the two agents converge
to unique optimal point (0, 0)T . We next claim that the con-
vergence rate is impossible to be exponential. Let x1(k) =
(x11(k), x12(k))

T and x2(k) = (x21(k), x22(k))
T . It is not

hard to see that x11(k) = x21(k) = 0, ∀k and x12(k + 1) =
x22(k + 1) = x12(k)/

√
1 + (x12(k))2, ∀k. Therefore, notic-

ing that limk→∞ x12(k) = 0, we have

lim
k→∞

|x1(k + 1)|
|x1(k)|

= lim
k→∞

1√
1 + (x12(k))

2
= 1,

which implies that there is no B > 0, 0 < γ < 1 such that
|x1(k)| = |x2(k)| ≤ Bγk holds, that is, the exponential con-
vergence is impossible and then the claim follows.

C. Critical Angle Error

The boundedness of system states plays a key role for
optimization methods [29], [31]. In this section, we consider
the effect of the angle error θi,k on the boundedness of the
states {xi(k), i ∈ V}∞k=0 caused by the approximate projected
consensus algorithm.

Suppose αi,k ≡ 1 and θi,k ≡ θ with 0 < θ < π/2. First, we
give the following conclusion to show that when θ < π/4, the
trajectories of the algorithm are uniformly bounded with respect
to all initial conditions.

Proposition 4.1: Suppose A1, A2, A5 hold and 0 < θ <
π/4. Then we have

sup
x(0)

lim sup
k→∞

|xi(k)|X0
< ∞

for i = 1, . . . , n.

Fig. 3. The interior assumption is basic for the exponential convergence rate.

Next, we investigate the non-conservativeness of π/4 in
Proposition 4.1. We focus on a special case with only one node
in the network. Its set is denoted as X∗. Denote the states of
the node as {x∗(k)}∞k=0 driven by the approximate projected
consensus algorithm:

x∗(k + 1) ∈ Psa
X∗(x∗(k), θ), (6)

where PXsa
∗ (x∗(k), θ) = CX∗(x∗(k), θ)

⋂
HX∗(x∗(k)).

The following conclusion holds.
Proposition 4.2: Suppose θ = π/4. Then we have

i) For any bounded closed convex set X∗ and initial condi-
tion x∗(0) ∈ �m, we have

lim sup
k→∞

|x∗(k)|X∗
≤ |x∗(0)|X∗

;

ii) There exists an approximate projection sequence
{P sa

∗ (k)}∞k=0 with P sa
∗ (k) ∈ Psa

X∗
(x∗(k), π/4) such that

(ii.1) lim supk→∞ |x∗(k)|X∗ = 0 when X∗ is a ball with
radius r > 0;

(ii.2) lim supk→∞ |x∗(k)|X∗ = |x∗(0)|X∗ when X∗ is a
single point.

We present another result when θ > π/4 in order to reveal
that, in this case, the node states will be unbounded as long as
the distance between the initial condition and X∗ is larger than
a certain threshold.

Proposition 4.3: Suppose θ > π/4. Then for any bounded
closed convex set X∗, there exists an approximate projection
sequence {P sa

∗ (k)}∞k=0 such that

lim sup
k→∞

|x∗(k)|X∗
= ∞

for all initial conditions satisfying

|x∗(0)|X∗
> sup

ω1,ω2∈X∗

|ω1 − ω2|/(tan θ − 1).

Combining Propositions 4.1, 4.2, and 4.3, we see that π/4
is a critical value of the angle error in the approximate pro-
jection for maintaining bounded states. If θ < π/4, the system
trajectories are uniformly bounded; if θ > π/4, the trajectories
diverge for a special case with one single node and particular
approximate projection points; if θ = π/4, the trajectories of
the algorithm with one node are bounded (no longer uniformly
with respect to initial conditions) and the property of the
trajectories highly depend on the shape of the convex set.
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V. PROOFS

In this section, we present all the proofs of the various
statements. Some auxiliary lemmas will be provided first, with
detailed proofs following for each result.

A. Supporting Lemmas

In this subsection, we first establish several useful lem-
mas. Let {xi(k)}∞k=0 be the states of node i generated by
algorithm (3). Denote |x(k)|X0

= (|x1(k)|X0
· · · |xn(k)|X0

)T ,
y(k) = (y1(k) · · · yn(k))T with

yi(k) = |xi(k)|X0
−
√

|xi(k)|2X0
− |xi(k)|2Xi

.

Denote A(k) = [aij(k)] and Dk = diag{α1,k · · ·αn,k}. The
following lemma holds.

Lemma 5.1: Suppose A1, A2, and A4 hold. Then

|x(k + 1)|X0
≤ A(k) |x(k)|X0

−A(k)Dky(k)

+ tan θ+k A(k)Dk |x(k)|X0
. (7)

Proof: According to Lemma 2.3, (5) implies

|xi(k + 1)|X0
≤

∑
j∈Ni(k)

aij(k)
(
(1− αj,k) |xj(k)|X0

+αj,k

∣∣P sa
j (k)

∣∣
X0

)
. (8)

By Lemma 2.1 (ii), we have∣∣P sa
j (k)

∣∣
X0

≤
∣∣P sa

j (k)−PXj
(xj(k))

∣∣+∣∣PXj
(xj(k))

∣∣
X0

. (9)

The definition of P sa
j (k) ensures that∣∣P sa

j (k)− PXj
(xj(k))

∣∣ ≤ tan θj,k |xj(k)|Xj
. (10)

Moreover, it follows from Lemma 2.2 that for any j ∈ V∣∣PXj
(xj(k))

∣∣
X0

≤
√

|xj(k)|2X0
− |xj(k)|2Xj

. (11)

It follows from inequalities (8), (9), (10), (11) and the relation
|xj(k)|Xj

≤ |xj(k)|X0
that

|xi(k + 1)|X0

≤
∑

j∈Ni(k)

aij(k)
(
(1− αj,k) |xj(k)|X0

+αj,k

√
|xj(k)|2X0

− |xj(k)|2Xj

)
+ tan θ+k

∑
j∈Ni(k)

aij(k)αj,k |xj(k)|X0
(12)

=
∑

j∈Ni(k)

aij(k)
(
|xj(k)|X0

− αj,k

(
|xj(k)|X0

−
√

|xj(k)|2X0
− |xj(k)|2Xj

))
+ tan θ+k

∑
j∈Ni(k)

aij(k)αj,k |xj(k)|X0
. (13)

Then the conclusion follows. �

Lemma 5.2: Suppose A1, A2, A4 hold,
∑∞

k=0 α
+
k tan θ+k <

∞. Then {xi(k)}∞k=0 is bounded for each i.
Proof: By taking K = Xj and z ∈ X0 ⊆ Xj , Lemma 2.1

(iv) leads to

∣∣PXj
(xj(k))− z

∣∣ ≤ √
|xj(k)− z|2 − |xj(k)|2Xj

. (14)

By considering |xi(k + 1)− z| instead of |xi(k + 1)|X0
,

following similar procedures with (8), (9), (10), and substituting
(11) with (14), we can show that, for any i ∈ V ,

|xi(k + 1)− z|

≤
∑

j∈Ni(k)

aij(k) |xj(k)− z| −
∑

j∈Ni(k)

aij(k)

× αj,k

(
|xj(k)− z| −

√
|xj(k)− z|2 − |xj(k)|2Xj

)
+ tan θ+k

∑
j∈Ni(k)

aij(k)αj,k |xj(k)− z| . (15)

By dropping the non-positive term of the right-hand side in
(15), and then based on A2 (i) we have

max
1≤i≤n

|xi(k+1)−z|≤(1+α+
k tan θ+k ) max

1≤i≤n
|xi(k)−z| . (16)

Therefore,

max
1≤i≤n

|xi(k + 1)− z|

≤
k∏

l=0

(
1 + α+

l tan θ+l
)
max
1≤i≤n

|xi(0)− z|

≤ e
∑k

l=0
α+

l
tan θ+

l max
1≤i≤n

|xi(0)− z|

≤ e
∑∞

l=0
α+

l
tan θ+

l max
1≤i≤n

|xi(0)− z| , (17)

where the second inequality follows from 1 + b ≤ eb for b ≥ 0.
Then the conclusion follows. �

The next lemma is a modified version of Lemma 11 in [7]
(page 50).

Lemma 5.3: Let {ak}∞k=0 and {bk}∞k=0 be non-negative se-
quences with

∑∞
k=0 bk < ∞. Suppose ak+1 ≤ ak + bk for all

k. Then limk→∞ ak is a finite number.
The following result is about the existence of a limit.
Lemma 5.4: Suppose A1, A2, A4 hold,

∑∞
k=0 α

+
k tan θ+k <

∞. Then the following limit exists:

lim
k→∞

max
1≤i≤n

|xi(k)|X0
:= ϑ.

Proof: Take z ∈ X0. Based on (13), (17), and
|xj(k)|X0

≤ |xj(k)− z|, we have

max
1≤i≤n

|xi(k + 1)|X0
≤ max

1≤i≤n
|xi(k)|X0

+α+
k tan θ+k e

∑∞
l=0

α+
l
tan θ+

l max
1≤i≤n

|xi(0)− z| .
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The conclusion follows from the last inequality and
Lemma 5.3. �

Denote

η+i = lim sup
k→∞

|xi(k)|X0
, η−i = lim inf

k→∞
|xi(k)|X0

, i ∈ V.

Obviously, 0 ≤ η−i ≤ η+i ≤ ϑ for all i.
Lemma 5.5: Suppose A1–A4 hold. If

∑∞
k=0 α

+
k tan θ+k <

∞ and there exists some agent i0 ∈ V such that η−i0 < ϑ, then
ϑ = 0.

Proof: Motivated by the idea of Lemma 4.3 in [35], we
prove this lemma by contradiction.

Denote

�i = (η−i + η+i )/2, i ∈ V.

Since η−i0 < ϑ and η+i0 ≤ ϑ, �i0 < ϑ. Let 0 < ε < ϑ− �i0 .
Then there exists an increasing sequence {kl}∞l=0 such that
|xi0(kl)|X0

≤ �i0 + ε < ϑ for l ≥ 0. Moreover, there ex-
ists K0 = K0(ε) such that d0

∑∞
k=K0

α+
k tan θ+k ≤ ε and

|xi(k)|X0
≤ ϑ+ ε for k ≥ K0 and each i, where

d0 = sup
1≤i≤n,k≥0

|xi(k)|X0
, (18)

which is a finite number by Lemma 5.2. Without loss of
generality, we assume k0 ≥ K0.

Based on inequality (13), we have

|xi0(k0 + 1)|X0
≤

∑
j∈Ni0

(k0)\i0

ai0j(k0) |xj(k0)|X0

+ ai0i0(k0) |xi0(k0)|X0
+ d0α

+
k0

tan θ+k0
.

Therefore, |xi0(k0 + 1)|X0
≤ (1− η)(ϑ+ ε) + η(�i0 + ε) +

d0α
+
k0

tan θ+k0
and then

|xi0(k0 + 2)|X0

≤ (1− η)(ϑ+ ε)

+ η
[
(1− η)(ϑ+ ε) + η (�i0 + ε) + d0α

+
k0

tan θ+k0

]
+ d0α

+
k0+1 tan θ

+
k0+1

≤ (1− η2)(ϑ+ ε) + η2 (�i0 + ε) + d0

k0+1∑
k=k0

α+
k tan θ+k ,

where the second inequality follows from 0 < η < 1. Similarly,
we can show by induction that for r ≥ 1

|xi0(k0 + r)|X0
≤ (1− ηr)(ϑ+ ε) + ηr (�i0 + ε)

+ d0

k0+r−1∑
k=k0

α+
k tan θ+k .

Since the communication graph is UJSC, there exist agent
i1 �= i0 and time k10 ∈ [k0, k0 + T ) such that (i0, i1) ∈ E(k10).
As the above estimate for |xi0(k0 + r)|X0

with xi0(k0), by

considering |xi1(k
1
0 + r)|X0

with |xi0(k
1
0)|X0

, we can show
similarly that, for r ≥ 1,∣∣xi1

(
k10 + r

)∣∣
X0

≤ (1− ηr)(ϑ+ ε) + ηr
∣∣xi0

(
k10

)∣∣
X0

+ d0

k1
0+r−1∑
k=k1

0

α+
k tan θ+k

≤ (1− ηk
1
0−k0+r)(ϑ+ ε) + ηk

1
0−k0+r (�i0 + ε)

+ d0

k1
0+r−1∑
k=k0

α+
k tan θ+k .

Repeating the previous procedure on intervals [k0+pT, k0 +
(p+ 1)T ), 1 ≤ p ≤ n− 2, we obtain nodes i2, i3, . . . , in−1

such that {ij , 0 ≤ j ≤ n− 1} = V and

max
1≤i≤n

|xi(k0 + T̂ )|X0

≤ (1− ηT̂ )(ϑ+ ε) + ηT̂ (�i0 + ε) + d0

∞∑
k=k0

α+
k tan θ+k

≤ (1− ηT̂ )(ϑ+ ε) + ηT̂ (�i0 + ε) + ε,

where T̂ = (n− 1)T . Moreover, we can make similar analysis
for k1, k2, . . . and obtain that for l ≥ 0,

max
1≤i≤n

|xi(kl + T̂ )|X0
≤ (1− ηT̂ )(ϑ+ ε) + ηT̂ (�i0 + ε) + ε,

which yields a contradiction since (1− ηT̂ )(ϑ+ ε) +

ηT̂ (�i0 + ε) + ε < ϑ provided that ε is sufficiently small. �
We introduce the transition matrices

Φ(k, s) = A(k) · · ·A(s+ 1)A(s) for all k and s with k ≥ s.

Recall that η and T were defined in A2 and A3, respectively and
T̂ = (n− 1)T . The next lemma generalizes Lemma 2 in [29]
on the lower bound of the entries of the transition matrices.

Lemma 5.6: Suppose A2 and A3 hold. Then Φ(k, s)ij ≥ ηT̂

for all i, j, s and k ≥ s+ T̂ − 1.
Proof: By Lemma 2 in [29], Φ(s+ T̂ − 1, s)ij ≥ ηT̂

for all i, j and s ≥ 0. Moreover, according to A2 (i),∑n
l=1 A(k)il = 1 and then

∑n
l=1 Φ(k, s+ T̂ )il = 1 for all i,

k and s. Thus, for all i, j and k ≥ s+ T̂ − 1,

Φ(k, s)ij =
(
Φ
(
k, s+ T̂

)
Φ
(
s+ T̂ − 1, s

))
ij

≥
n∑

l=1

Φ
(
k, s+ T̂

)
il

min
1≤p,q≤n

Φ
(
s+ T̂ − 1, s

)
pq

= ηT̂ .

The conclusion follows. �
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Lemma 5.7:

1

n

n∑
i=1

√
v20 − v2i ≤

√
v20 −

(∑n
i=1 vi
n

)2

where v0 ≥ vi ≥ 0 for all i.
Proof: The conclusion follows from that f(z)=

√
c2−z2

with domain [−c, c] is a concave function for c > 0. �
Consider the following consensus model with disturbancewi,

zi(k + 1) =
∑

j∈Ni(k)

bij(k)zj(k) + wi(k), i = 1, . . . , n, (19)

where the weights bij(k), i, j ∈ Ni(k), k ≥ 0 satisfy A2. Con-
sensus is said to be achieved for system (19) if for any initial
conditions, limk→∞ |zi(k)− zj(k)| = 0 for all 1 ≤ i, j ≤ n.
The next lemma can be obtained from Theorem 1 in [39].

Lemma 5.8: If the graph of system (19) is UJSC with
limk→∞ wi(k) = 0 for all i, then consensus is achieved for
system (19).

In the following three subsections, we will present the proofs
of Theorems 4.1, 4.2 and a simplified proof of Theorem 4.1
under the double stochasticity graph assumption, respectively.

B. Proof of Theorem 4.1

Rewrite (5) as

xi(k+1)=
∑

j∈Ni(k)

aij(k)xj(k)

+
∑

j∈Ni(k)

aij(k)αj,k

(
PXj

(xj(k))−xj(k)
)

+
∑

j∈Ni(k)

aij(k)αj,k

(
P sa
j (k)−PXj

(xj(k))
)
. (20)

Based on (10), the sum of second and third terms in (20) is not
larger than

max
1≤i≤n

αi,k |xi(k)|Xi
+ α+

k tan θ+k max
1≤i≤n

|xi(k)|Xi
. (21)

Recall that ϑ = limk→∞ max1≤i≤n |xi(k)|X0
. Therefore,

ϑ=0 leads to limk→∞max1≤i≤n |xi(k)|Xi
≤ limk→∞max1≤i≤n

|xi(k)|X0
=0, which implies that (21) tends to zero as k→∞.

Therefore, by applying Lemma 5.8 to (20), consensus is
achieved if ϑ = 0.

Moreover, we claim that, if ϑ = 0 and a consensus is
achieved, all agents converge to a point in X0. Since
{xi(k)}∞k=0, i = 1, . . . , n are bounded by Lemma 5.2 and the
consensus is achieved, there exist x∗ ∈ X0 and a subsequence
{kl}∞l=0 to make liml→∞ xi(kl) = x∗. Similar to (17), we have

max
1≤i≤n

|xi(k)− x∗| ≤ e

∑∞
p=kl

α+
p tan θ+

p
max
1≤i≤n

|xi(kl)− x∗|

≤ e

∑∞
p=0

α+
p tan θ+

p max
1≤i≤n

|xi(kl)− x∗|

for k ≥ kl, which implies limk→∞ xi(k) = x∗ for all i.

If there exists some agent i0 such that η−i0 < ϑ, then ϑ = 0
by Lemma 5.5. Therefore, we only need to prove

η+i = η−i = ϑ for all i =⇒ ϑ = 0,

which shall be proven by contradiction. If ϑ > 0, then for any
ε > 0, there exists K1 = K1(ε) such that |xi(k)|X0

≤ ϑ+ ε
and d0α

+
k tan θ+k ≤ ε for k ≥ K1 and all i. We complete the

proof in the following two steps.
(i). Suppose η+i = η−i = ϑ for all i. Consensus is achieved:

limk→∞ |xi(k)− xj(k)| = 0 for all i, j.
Denote

ςi = lim sup
k→∞

αi,k |xi(k)|Xi
, i ∈ V.

We next prove ςi = 0 for all i by contradiction. If there
exists some agent i0 such that ςi0 > 0, then there is an in-
creasing time subsequence {kl}∞l=0 with k0 ≥ K1 such that
αi0,kl

|xi0(kl)|Xi0
≥ cςi0 for all l and some 0 < c < 1. There-

fore, by (12)

|xi0(kl + 1)|X0

≤ ai0i0(k)
(
(1− αi0,kl

) |xi0(kl)|X0

+ αi0,kl

√
|xi0(kl)|

2
X0

− |xi0(kl)|
2
Xi0

)

+
∑

j∈Ni0
(kl)\i0

ai0j(kl) |xj(kl)|X0
+ d0α

+
kl
tan θ+kl

≤ η
(
(1− αi0,kl

) (ϑ+ ε) +
√

α2
i0,kl

(ϑ+ ε)2 − c2ς2i0

)

+ (1− η)(ϑ+ ε) + ε

= (1− ηαi0,kl
)(ϑ+ ε)

+ η
√
α2
i0,kl

(ϑ+ ε)2 − c2ς2i0 + ε, (22)

where d0 is the one given in (18), which yields a contradiction
since the right-hand side of (22) is less than ϑ for a sufficiently
small ε and sufficiently large l.

Consequently, limk→∞ αi,k|xi(k)|Xi
= 0 for all i. More-

over, since
∑∞

k=0 α
+
k tan θ+k < ∞, limk→∞ α+

k tan θ+k = 0.
The two preceding conclusions and the boundedness of
{xi(k)}∞k=0 imply that the term in (21) tends to zero and
then consensus is achieved by applying Lemma 5.8 to (20)
again.

(ii). Suppose η+i = η−i = ϑ for all i. All agents converge to
the nonempty intersection set X0: limk→∞ |xi(k)|X0

= 0 for
all i.

Denote

δ = lim inf
k→∞

n∑
i=1

|xi(k)|Xi
.

We prove δ = 0 by contradiction. Hence, suppose δ > 0.
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By (7), we obtain that, for k ≥ s,

|x(k + 1)|X0

≤ Φ(k, s)|x(s)|X0
−

k∑
l=s

Φ(k, l)Dly(l)+d0

k∑
l=s

α+
l tan θ+l 1

= Φ(k, s) |x(s)|X0
−

k−T̂+1∑
l=s

Φ(k, l)Dly(l)

−
k∑

l=k−T̂+2

Φ(k, l)Dly(l) + d0

k∑
l=s

α+
l tan θ+l 1, (23)

where 1 is the vector of all ones and T̂ = (n− 1)T . Dropping
the third term (nonpositive) on the right-hand side in (23) yields

|x(k + 1)|X0
≤ Φ(k, s) |x(s)|X0

−
k−T̂+1∑
l=s

Φ(k, l)Dly(l)

+d0

k∑
l=s

α+
l tan θ+l 1. (24)

For ε̄ = δ2/(4n2ϑ+ 2δ), there is a sufficiently large K2 such
that

∑n
i=1 |xi(k)|Xi

> δ − ε̄ and ϑ− ε̄ ≤ |xi(k)|X0
≤ ϑ+ ε̄

for k ≥ K2. For k ≥ K2, we have

n∑
i=1

√
|xi(k)|2X0

− |xi(k)|2Xi

≤
n∑

i=1

√
(ϑ+ ε̄)2 − |xi(k)|2Xi

≤ n

√
(ϑ+ ε̄)2 −

(∑n
i=1 |xi(k)|Xi

n

)2

≤ n

√
(ϑ+ ε̄)2 −

(
δ − ε̄

n

)2

where the second inequality follows from Lemma 5.7 and then

n∑
i=1

(
|xi(k)|X0

−
√

|xi(k)|2X0
− |xi(k)|2Xi

)

≥ n

⎛
⎝ϑ− ε̄−

√
(ϑ+ ε̄)2 −

(
δ − ε̄

n

)2
⎞
⎠

:= ζ > 0.

Namely,
∑n

i=1 yi(l) ≥ ζ for l ≥ K2. Combining the preceding
inequality with Lemma 5.6, we have that every component of
Φ(k, l)Dly(l) is not less than ηT̂ ζα−

l for K2 ≤ l ≤ k − T̂ + 1

and k ≥ K2 + T̂ − 1. Then by (24) with taking s = K2

|x(k + 1)|X0
≤ Φ(k,K2) |x(K2)|X0

− ηT̂ ζ

k−T̂+1∑
l=K2

α−
l 1

+d0

k∑
l=K2

α+
l tan θ+l 1. (25)

Observing that
∑∞

l=K2
α−
l = ∞,

∑∞
l=K2

α+
l tan θ+l < ∞, and

limk→∞ |x(k)|X0
= ϑ1, a contradiction arises as k → ∞

in (25).
Therefore, δ = 0, that is, there is a subsequence {kl}∞l=0 such

that liml→∞
∑n

i=1 |xi(kl)|Xi
= 0. Since consensus is achieved

by what we have proven in step (i), we have

lim
l→∞

n∑
i=1

|xi(kl)|Xj
= 0 for all j ∈ V,

which implies ϑ = liml→∞ max1≤i≤n |xi(kl)|X0
= 0.

This completes the proof. �

C. Proof of Theorem 4.2

Clearly, if θi,k ≡ 0, the intersection set in (1) is the
line segment from xi(k) to PXi

(xi(k)) and then P sa
i (k) =

PXi
(xi(k)). Then the approximate projected consensus algo-

rithm can be written as

xi(k + 1) =
∑

j∈Ni(k)

aij(k)
(
(1− αj,k)xj(k)

+αj,kPXj
(xj(k))

)
, i = 1, . . . , n. (26)

We complete the proof by analyzing the following two parts.
(i). Here we prove that if

∑∞
k=0 α

+
k < ∞, then there exist initial

conditions from which all agents will not converge to X0 and
then the conclusion follows. Let z∗ ∈ �m. By (26), xi(1) can
be rewritten as

xi(1) =
∑

j∈Ni(0)

aij(0)
(
(1− αj,0)xj(0) + αj,0PXj

(xj(0))
)

=
∑

j∈Ni(0)

aij(0)(1− αj,0)z
∗

+
∑

j∈Ni(0)

aij(0)αj,0PX0
(z∗) + Δi,0

=(1− βi,0)z
∗ + βi,0PX0

(z∗) + Δi,0,

where βi,0 =
∑

j∈Ni(0)
aij(0)αj,0, Δi,0 =

∑
j∈Ni(0)

aij(0)

(αj,0(PXj
(z∗)− PX0

(z∗))+(1− αj,0)(xj(0)− z∗) +

αj,0(PXj
(xj(0))− PXj

(z∗))) with |Δi,0| ≤ α+
0 d

∗ +
max1≤j≤n |xj(0)− z∗| for all i.

We also have

xi(2) =
∑

j∈Ni(1)

aij(1)
(
(1− αj,1)xj(1) + αj,1PXj

(xj(1))
)

=
∑

j∈Ni(1)

aij(1)(1−αj,1) ((1−βj,0)z
∗+βj,0PX0

(z∗))

+
∑

j∈Ni(1)

aij(1)αj,1PX0
((1−βj,0)z

∗+βj,0PX0
(z∗))

+ Δi,1

=(1− βi,1)z
∗ + βi,1PX0

(z∗) + Δi,1,

where 1−βi,1=
∑

j∈Ni(1)
aij(1)(1−αj,1)(1−βj,0), the third

equality follows from Lemma 2.1 (iii) and Δi,1 = Δ1
i,1 +
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Δ2
i,1 +Δ3

i,1 with

Δ1
i,1 =

∑
j∈Ni(1)

aij(1)(1− αj,1)Δj,0;

Δ2
i,1 =

∑
j∈Ni(1)

aij(1)αj,1

(
PXj

(xj(1))− PX0
(xj(1))

)
;

Δ3
i,1 =

∑
j∈Ni(1)

aij(1)αj,1

× (PX0
(xj(1))− PX0

((1−βj,0)z
∗+βj,0PX0

(z∗))).

(27)

We now give an estimation for the upper bound of Δi,1. By
Lemma 2.1 (i)

|PX0
(xj(1))− PX0

((1− βj,0)z
∗ + βj,0PX0

(z∗))|
≤ |xj(1)− ((1− βj,0)z

∗ + βj,0PX0
(z∗))|

= |Δj,0|,

which implies |Δ1
i,1|+ |Δ3

i,1| ≤ max1≤i≤n |Δi,0| ≤α+
0 d

∗ +

max1≤j≤n |xj(0)− z∗|, and then |Δi,1| ≤ |Δ1
i,1|+ |Δ3

i,1|+
|Δ2

i,1| ≤ (α+
0 + α+

1 )d
∗+max1≤j≤n |xj(0)− z∗|.

Similarly, we can show by induction that for all i and k,
xi(k + 1) can be expressed as

xi(k + 1) = (1− βi,k)z
∗ + βi,kPX0

(z∗) + Δi,k, (28)

where |Δi,k| ≤
∑k

l=0 α
+
l d

∗ +max1≤j≤n |xj(0)− z∗| and
{βi,k, i ∈ V}∞k=0 satisfies

1− βi,k =
∑

j∈Ni(k)

aij(k)(1− αj,k)(1− βj,k−1). (29)

Based on (9), we can show by induction that

1− βi,k ≥
k∏

l=0

(
1− α+

l

)
for all i and k. (30)

It follows from (28) and Lemma 2.1 (ii) that

|xi(k + 1)|X0

≥ |(1− βi,k)z
∗ + βi,kPX0

(z∗)|X0
− |Δi,k|. (31)

Moreover, for a convex set K and any 0 ≤ λ ≤ 1,

|(1− λ)x+ λPK(x)|K
= |(1− λ)x+ λPK(x)− PK ((1− λ)x+ λPK(x))|
= |(1− λ)x+ λPK(x)− PK(x)|
= (1− λ)|x|K , (32)

where the second equality follows from Lemma 2.1 (iii). Taking
λ = βi,k in (32) gives

|(1− βi,k)z
∗ + βi,kPX0

(z∗)|X0
= (1− βi,k)|z∗|X0

.

Combining the last equality with (31) and (30), we obtain

|xi(k + 1)|X0
≥

k∏
l=0

(
1− α+

l

)
|z∗|X0

−
(

k∑
l=0

α+
l d

∗ + max
1≤j≤n

|xj(0)− z∗|
)
. (33)

Taking the inferior limit on the two sides of (33), we have
that, for all i,

lim inf
k→∞

|xi(k)|X0
≥

∞∏
l=0

(
1− α+

l

)
|z∗|X0

−
( ∞∑

l=0

α+
l d

∗ + max
1≤j≤n

|xj(0)− z∗|
)
, (34)

which is positive provided that

|z∗|X0
>

∑∞
l=0 α

+
l d

∗ +max1≤j≤n |xj(0)− z∗|∏∞
l=0

(
1− α+

l

) , (35)

where
∏∞

l=0(1− α+
l ) > 0 since 0 ≤ α+

l < 1 for all l and∑∞
l=0 α

+
l < ∞. Thus, all agents will not converge to the set

X0 for all initial conditions for which (35) has a solution
z∗. Clearly, for the initial condition xi(0) = z∗, i = 1, . . . , n
with |z∗|X0

>
∑∞

l=0 α
+
l d

∗/
∏∞

l=0(1− α+
l ), all agents will not

converge to X0 and then the optimal consensus cannot be
achieved.

(ii). We will prove that, for the initial condition xi(0) =
z∗, i = 1, . . . , n, if

∑∞
k=0 α

+
k < ∞, there is y∗ = y∗(z∗) �∈ X0

such that limk→∞ xi(k) = y∗ for all i provided that z∗ satisfies
|z∗|X0

>
∑∞

l=0 α
+
l d

∗/
∏∞

l=0(1− α+
l ).

Denote d1 = sup1≤i≤n,k≥0 |xi(k)|Xi
, which is finite by

Lemma 5.2. From (26)

xi(k + 1) =
∑

j∈Ni(k)

aij(k)xj(k) + Γi,k, k ≥ 0, (36)

where Γi,k =
∑

j∈Ni(k)
aij(k)αj,k(PXj

(xj(k))− xj(k)) with

|Γi,k| ≤ d1α
+
k .

Take i0 ∈ V . It follows from (36) that, for each j and k,

|xj(k + 1)− xi0(k)|

≤ max
1≤p,q≤n

|xp(k)− xq(k)|+ max
1≤r≤n

|Γr,k|. (37)

Then

|xi0(k + 2)− xi0(k)|

=

∣∣∣∣∣∣
∑

j∈Ni0
(k+1)

ai0j(k + 1)xj(k + 1)

+
∑

j∈Ni0
(k+1)

ai0j(k + 1)Γj,k+1 − xi0(k)

∣∣∣∣∣∣
≤ max

1≤j≤n
|xj(k + 1)− xi0(k)|+ max

1≤r≤n
|Γr,k+1|

≤ max
1≤p,q≤n

|xp(k)− xq(k)|+ max
1≤r≤n

|Γr,k|+ max
1≤r≤n

|Γr,k+1|

≤ max
1≤p,q≤n

|xp(k)− xq(k)|+ d1(α
+
k + α+

k+1).
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We can similarly show by induction that for all k and l,

|xi0(k + l)− xi0(k)|

≤ max
1≤p,q≤n

|xp(k)− xq(k)|+ d1

k+l−1∑
s=k

α+
s

≤ max
1≤p,q≤n

|xp(k)− xq(k)|+ d1

∞∑
s=k

α+
s . (38)

Since limk→∞ α+
k = 0 and {xi(k)}∞k=0 is bounded for all i,

consensus is achieved for (36) by Lemma 5.8. Combining
the consensus and the boundedness of {xi(k)}∞k=0, there exist
a subsequence {kl}∞l=0 and y∗ such that liml→∞ xi(kl) = y∗

for all i. Therefore, since
∑∞

k=0 α
+
k < ∞, for any ε > 0,

there exists l0 = l0(ε) such that |xi(kl)− xj(kl)| ≤ ε/2 and
d1

∑∞
s=kl

α+
s ≤ ε/2 for each i, j and l ≥ l0. Thus, for l ≥ l0

and k ≥ kl,

|xi0(k)− xi0(kl)| ≤ max
1≤p,q≤n

|xp(kl)− xq(kl)|+ d1

∞∑
s=kl

α+
s

≤ ε,

which implies limk→∞ xi0(k) = y∗ since ε can be arbitrarily
small. By the analysis in the first part (i), y∗ �∈ X0. The conclu-
sion follows because i0 is taken from V arbitrarily.

The proof is complete. �

D. A Simplified Proof of Theorem 4.1 With Doubly
Stochastic Graphs

Suppose the arc weights are doubly stochastic, that is,∑n
j=1 aij(k) =

∑n
j=1 aji(k) = 1 for all i, k, and

∑∞
k=0 α

−
k =

∞ and
∑∞

k=0 α
+
k tan θ+k < ∞. By summing up the two sides

in (13) over i = 1, . . . , n, we obtain

n∑
i=1

|xi(k + 1)|X0
≤

(
1 + α+

k tan θ+k
) n∑
i=1

|xi(k)|X0

−
n∑

i=1

αi,k

(
|xi(k)|X0

−
√

|xi(k)|2X0
− |xi(k)|2Xi

)
. (39)

Summing the two sides in (39) over k ≥ 0 and rearranging the
terms, we have

∞∑
k=0

α−
k

n∑
i=1

(
|xi(k)|X0

−
√

|xi(k)|2X0
− |xi(k)|2Xi

)

≤
∞∑

k=0

n∑
i=1

αi,k

(
|xi(k)|X0

−
√

|xi(k)|2X0
− |xi(k)|2Xi

)

≤
n∑

i=1

|xi(0)|X0
+

∞∑
k=0

α+
k tan θ+k

n∑
i=1

|xi(k)|X0

< ∞. (40)

The assumption
∑∞

k=0 α
−
k = ∞ and (40) imply that

lim inf
k→∞

n∑
i=1

(
|xi(k)|X0

−
√

|xi(k)|2X0
− |xi(k)|2Xi

)
= 0

and then

lim inf
k→∞

n∑
i=1

|xi(k)|Xi
= 0. (41)

From (40) we also have

lim
k→∞

n∑
i=1

αi,k

(
|xi(k)|X0

−
√

|xi(k)|2X0
−|xi(k)|2Xi

)
=0 (42)

and then, for i ∈ V ,

lim sup
k→∞

αi,k |xi(k)|Xi
= 0 (43)

since if there exist node i0 and subsequence {kl}∞l=0 such that
αi0,kl

|xi0(kl)|Xi0
≥ ε for all l and some 0 < ε < d0, then for

all l,

αi0,kl

(
|xi0(kl)|X0

−
√

|xi0(kl)|
2
X0

− |xi(kl)|2Xi0

)

≥ αi0,kl
|xi0(kl)|X0

−
√

α2
i0,kl

|xi0(kl)|
2
X0

− ε2

≥ d0 −
√

d20 − ε2

> 0,

which contradicts (42), where the second inequality fol-
lows from the function f(b) = b−

√
b2 − ε2 is non-increasing

on [ε,∞) and ε ≤ αi0,kl
|xi0(kl)|Xi0

≤ αi0,kl
|xi0(kl)|X0

≤ d0
for all l. As shown in Theorem 4.1, (41) and (43) imply the
optimal consensus. �

In the following three subsections, we will present the proofs
of Propositions 4.1, 4.2, and 4.3, respectively.

E. Proof of Proposition 4.1

Recall d∗ = supω1,ω2∈∪n
i=1

Xi
|ω1 − ω2|, which is finite due

to the boundedness of Xi, i = 1, . . . , n. We claim that, for each
i and all initial conditions x(0) = (xT

1 (0) · · ·xT
n (0))

T
,

lim sup
k→∞

|xi(k)|X0
≤ 2d∗

1− tan θ
,

which implies the conclusion.
Based on (9), (10) and the definition of d∗, we have

|P sa
i (k)|X0

≤ tan θ |xi(k)|Xi
+ |PXi

(xi(k))|X0

≤ tan θ |xi(k)|X0
+ d∗. (44)

Furthermore, in the case of |xi(k)|X0
≥ 2d∗/(1− tan θ), we

obtain

|P sa
i (k)|X0

≤ tan θ |xi(k)|X0
+ d∗

≤ 1 + tan θ

2
|xi(k)|X0

. (45)
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We next consider h(k) := max1≤i≤n |xi(k)|X0
for the fol-

lowing two cases:
(i) h(k) ≤ 2d∗/(1− tan θ). By Lemma 2.3 and (44), we

have for all i,

|xi(k + 1)|X0
≤

∑
j∈Ni(k)

aij(k)
∣∣P sa

j (k)
∣∣
X0

=
∑

j∈Ni(k)

aij(k)
(
tan θ |xj(k)|X0

+ d∗
)

≤ 2d∗ tan θ

1− tan θ
+ d∗

≤ 2d∗

1− tan θ
. (46)

Therefore, h(k + 1) ≤ 2d∗/(1− tan θ).
(ii) h(k)>2d∗/(1−tan θ). Define V1(k)={i| |xj(k)|X0

≤
2d∗/(1− tan θ) for all j ∈ Ni(k)} and V2(k) = V \
V1(k), where V2(k) is nonempty.
1) If i ∈ V1(k), similar to (46), we obtain |xi(k +

1)|X0
≤ 2d∗/(1− tan θ);

2) If i ∈ V2(k), we can define N 1
i (k) = {j| j ∈

Ni(k), |xj(k)|X0
≤ 2d∗/(1− tan θ)} and N 2

i (k) =
Ni(k) \ N 1

i (k), where N 2
i (k) is nonempty.

According to Lemma 2.3,

|xi(k + 1)|X0
≤

∑
j∈N 1

i
(k)

aij(k)
∣∣P sa

j (k)
∣∣
X0

+
∑

j∈N 2
i
(k)

aij(k)
∣∣P sa

j (k)
∣∣
X0

. (47)

For j ∈ N 1
i (k), by (44) we have |P sa

j (k)|X0
≤

tan θ|xj(k)|X0
+ d∗ ≤2d∗ tan θ/(1− tan θ) + d∗ ≤

2d∗/(1− tan θ). As a result, by (45) and (47), we
have

|xi(k + 1)|X0
≤ 2d∗

1− tan θ

∑
j∈N 1

i
(k)

aij(k)

+
1 + tan θ

2

∑
j∈N 2

i
(k)

aij(k) |xj(k)|X0
. (48)

Since |xj(k)|X0
≥2d∗/(1−tan θ) for all j ∈ N 2

i (k),
maxj∈Ni(k) |xj(k)|X0

≥ 2d∗/(1− tan θ). Thus, it
follows from (48) that

|xi(k + 1)|X0

≤

⎛
⎝ ∑

j∈N 1
i
(k)

aij(k) +
1 + tan θ

2

×
∑

j∈N 2
i
(k)

aij(k)

⎞
⎠ max

j∈Ni(k)
|xj(k)|X0

≤
(
1− η +

1 + tan θ

2
η

)
h(k + 1)

=

(
1− η(1− tan θ)

2

)
h(k + 1),

where 0 < 1− η(1− tan θ)/2 < 1 and η is the lower
bound of weights in A2.

Fig. 4. Approximate projection with respect to a ball.

Therefore, based on the cases 1) and 2), we show that, if
h(k) > 2d∗/(1− tan θ), then

h(k + 1) ≤ max {2d∗/(1− tan θ) ,

(1− η(1− tan θ)/2)h(k)} .

Combining the two cases (i) and (ii), we have

h(k + 1) ≤

⎧⎨
⎩

2d∗/(1− tan θ), if h(k) ≤ 2d∗/(1− tan θ);
max {2d∗/(1− tan θ),

(1− η(1− tan θ)/2)h(k)} , otherwise.

Thus, the conclusion follows. �

F. Proof of Proposition 4.2

(i) The conclusion follows from that

|x∗(k + 1)|X∗
≤ |x∗(k + 1)− PX∗(x∗(k))|

≤ tan θ |x∗(k)|X∗
= |x∗(k)|X∗

.

(ii) We select {P sa
∗ (k)}∞k=0 for which x∗(k+1)=P sa

∗ (k)∈
Psa
X∗

(x∗(k), π/4), ∠(P sa
∗ (k)− x∗(k), PX∗(x∗(k))−x∗(k)) =

π/4 for k ≥ 0 such that the solution of (6) with θ = π/4
satisfies the following two cases.

(ii.1) It is easy to find that

|x∗(k + 1)|X∗
=

√
|x∗(k)|2X∗

+ r2 − r, k ≥ 0, (49)

which implies that the sequence {|x∗(k)|X∗}
∞
k=0 is non-

increasing and then converges to some nonnegative number μ.
As k → ∞ in (49), we have μ =

√
μ2 + r2 − r and therefore,

μ = 0 (see Fig. 4).
(ii.2) The conclusion is straightforward. �

G. Proof of Proposition 4.3

Select {P sa
∗ (k)}∞k=0, for which x∗(k + 1) = P sa

∗ (k) ∈
Psa
X∗

(x∗(k), θ) and ∠(P sa
∗ (k)− x∗(k), PX∗(x∗(k))−
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x∗(k)) = θ for all k. Then we have

|x∗(k + 1)|X∗
≥ |x∗(k+1)−PX∗(x∗(k))|
− |PX∗(x∗(k))−PX∗(x∗(k+1))|

= tan θ |x∗(k)|X∗
− |PX∗(x∗(k))− PX∗(x∗(k + 1))|

≥ tan θ |x∗(k)|X∗
− sup

ω1,ω2∈X∗

|ω1 − ω2|. (50)

At this point, we need the following conclusion: consider
a nonnegative sequence {zk}∞k=0 with zk+1 ≥ (tan θ)zk − d̂

and θ > π/4. Then limk→∞ zk = ∞ if (tan θ − 1)z0 − d̂ > 0.
Note that z1 − z0 ≥ (tan θ − 1)z0 − d̂ > 0 and then z2 − z1 ≥
(tan θ − 1)z1 − d̂ ≥ (tan θ − 1)z0 − d̂ > 0. We can show
similarly by induction that zk+1 − zk ≥ (tan θ − 1)z0 − d̂ for
all k. Thus, the conclusion follows from (50). �

VI. NUMERICAL EXAMPLES

In this section, we first provide a numerical example com-
paring our approximate projected consensus algorithm with
the projected consensus algorithm presented in [30] for three
classes of convex sets and four classes of communication
graphs from the perspective of convergence rate, and then a nu-
merical example validating the approximate error angle results.

Example 6.1: Consider a network consisting of n agents
with node set {1, 2, . . . , n} in �2, their convex sets are
X1, X2, . . . , Xn. All agents have the same initial conditions
x1(0) = x2(0) = · · · = xn(0). The communication graph is
fixed. Here we consider three classes of convex sets:

• Unit balls: the center of unit ball Xi is (cos(2π(i−
1)/n), sin(2π(i− 1)/n))T , i = 1, . . . , n;

• Lines: all lines pass the origin point with tangent
angle π(i− 1)/n, that is, Xi = {(z1, z2)T | sin(π(i−
1)/n)z1 = cos(π(i− 1)/n)z2}, i = 1, . . . , n;

• Half-spaces: all half-spaces pass the origin with normal
direction (− sin(2π(i− 1)/n), cos(2π(i− 1)/n))T , that
is, Xi = {(z1, z2)T | cos(2π(i− 1)/n)z2−sin(2π(i−
1)/n)z1 ≤ 0}, i = 1, . . . , n,

and four classes of connected communication graphs

• Completely connected graphs (CCG): aii = 1/n, i =
1, . . . , n;

• Chains: a11 = a22 = 1/2, ai(i−1) = aii = ai(i+1) = 1/3,
2 ≤ i ≤ n− 1, an(n−1) = ann = 1/2;

• Stars: a1i = 1/n, 1 ≤ i ≤ n; aii = ai1 = 1/2, 2 ≤ i ≤ n;
• Cycles: ai(i−1) = aii = ai(i+1) = 1/3, 2 ≤ i ≤ n− 1,
a1n = a11 = a12 = an(n−1) = ann = an1 = 1/3.

Let n = 50. Note that for the three classes of convex sets,
X0 = {(0, 0)T }. We consider 400 initial conditions {(−1.9 +
0.2p,−1.9 + 0.2q)T |0 ≤ p ≤ 19, 0 ≤ q ≤ 19} equally spaced
over the square {(z1, z2)T ||z1| ≤ 2, |z2| ≤ 2}. The following
Tables I and II give the fraction of the initial conditions in the
400 initial conditions from which the approximate projected
consensus algorithm (APCA) with αi,k ≡ 0.5 and θi,k ≡ 0
converges faster than the projected consensus algorithm (PCA)
presented in [30] at time 600 and 1000, respectively (compare
their distance function h(k) = max1≤i≤n |xi(k)|X0

).

TABLE I
FRACTION OF THE INITIAL CONDITIONS FROM WHICH

APCA CONVERGES FASTER THAN PCA AT TIME 600

TABLE II
FRACTION OF THE INITIAL CONDITIONS FROM WHICH

APCA CONVERGES FASTER THAN PCA AT TIME 1000

TABLE III
AVERAGE OF THE NEEDED ITERATION STEPS OF

APCA AND PCA SUCH THAT h(k) ≤ 0.05

TABLE IV
AVERAGE OF THE NEEDED ITERATION STEPS OF

APCA AND PCA SUCH THAT h(k) ≤ 0.01

Tables III and IV present the average of needed iteration steps
for the 400 initial conditions from which the APCA with αi,k ≡
0.5 and θi,k ≡ 0 and the PCA achieve the optimal convergence
with errors 0.05 and 0.01, respectively.

From the first two tables, we find that when the convex sets
are lines and half-spaces, our algorithm with the four classes of
communication graphs converges slower for all the 400 initial
conditions, while when the convex sets are unit balls, beyond
93% initial conditions, our algorithm with stars converges faster
than the PCA in [30]. From the second two tables, we find that
for all the three classes of convex sets and the communication
graph chains and cycles, the needed iteration steps to achieve
a certain convergence error for the APCA and the PCA are
almost the same. Moreover, from the simulation results for unit
balls and star graphs, we can infer that the APCA converges
faster than PCA when agents are close to the origin. In fact,
which algorithm converges faster highly depends on the shape
of convex sets, communication graph, the computation time and
the initial conditions.

Example 6.2: In this example, we consider algorithm (6)
with X∗ being the segment {(0, z)T |0 ≤ z ≤ 1}, where the
initial condition is x∗(0) = (15, 15)T . The convergence pro-
cesses of algorithm (6) with angle errors tan θ = 0.9, tan θ =
1, tan θ = 1.1 are shown in Fig. 5. The simulation thus con-
firms the conclusions from Propositions 4.2, 4.3. From Fig. 5
we can find that the system states grow to infinity when the
angle error is grater than π/4, while stay bounded when the
angle error is less than or equal to π/4.
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Fig. 5. π/4 is a critical angle error of maintaining the boundedness of system
states.

VII. CONCLUSIONS

In this paper, we proposed an approximate projected con-
sensus algorithm for a network to cooperatively compute the
intersection of a sequence of convex sets, each of which is
known only to one node. Each node computes an approximate
projection located in its convex projection cone. Sufficient
and/or necessary conditions were obtained for the considered
algorithm on how much projection accuracy is required to
ensure a global consensus within the intersection set, under the
assumption that the communication graph is uniformly jointly
strongly connected. We showed that π/4 is a threshold for the
angle error in the projection approximation to ensure a bounded
solution for the iterative projections. Examples was provided
to verify the obtained results and compare the convergence
rate of the approximate projected consensus algorithm and the
projected consensus algorithm. Future works might include
the effect of communication delay or packet drop, and the
communication complexity for distributed optimization.
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[30] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and op-
timization in multi-agent networks,” IEEE Trans. Autom. Control, vol. 55,
no. 4, pp. 922–938, Apr. 2010.
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