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a b s t r a c t

In this paper, we investigate a distributed shortest distance optimization problem for a multi-agent
network to cooperatively minimize the sum of the quadratic distances from some convex sets, where
each set is only associated with one agent. To deal with this optimization problem with projection
uncertainties, we propose a distributed continuous-time dynamical protocol, where each agent can
only obtain an approximate projection and communicate with its neighbors over a time-varying
communication graph. First,we show that nomatter how large the approximate angle is, system states are
always bounded for any initial condition, anduniformly boundedwith respect to all initial conditions if the
inferior limit of the stepsize is greater than zero. Then, in both cases of nonempty and empty intersection
of convex sets, we provide stepsize and approximate angle conditions to ensure the optimal convergence,
respectively. Moreover, we also give some characterizations about the optimal solutions for the empty
intersection case.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, distributed optimization of a sum of convex
functions has attractedmuch attention due to its wide applications
in resource allocation, source localization and robust estimation
(referring to Bertsekas & Tsitsiklis, 1989, Jakovetic, Xavier, &
Moura, 2011, Johansson, Rabi, & Johansson, 2009, Lu & Tang, 2012,
Lu, Tang, Regier, & Bow, 2011, Nedić & Ozdaglar, 2008, Nedić &
Ozdaglar, 2009 and Nedić, Ozdaglar, & Parrilo, 2010). A whole
optimization task can be accomplished cooperatively by a group
of autonomous agents via simple local information exchange and
distributed protocol design even when the communication graph
among agents is time-varying.

Although many existing distributed optimization works have
been done by discrete-time algorithms, more and more attention
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has been paid to continuous-time algorithms in recent years
(Droge, Kawashima, & Egerstedt, 2014; Gharesifard & Cortés, 2014;
Kvaternik & Pavel, 2012; Shi, Johansson, & Hong, 2013; Wang &
Elia, 2010, 2011), partially because continuous-time models can
be studied by various well-developed continuous-time methods
or make the algorithms easily implemented in physical systems.
A distributed continuous-time computation model was proposed
to solve an optimization problem for a fixed undirected graph
in Wang and Elia (2010), with the optimization achieved by
controlling the sum of subgradients of convex functions, and later
this model was generalized to weight balanced graph case in
Gharesifard andCortés (2013) for differentiable objective functions
with globally Lipschitz continuous gradient. Another continuous-
time distributed algorithmwith a constant stepsizewas developed
in Kvaternik and Pavel (2012) for optimization problems with
positivity constraints in a fixed undirected graph case, where a
lower bound of convergence rate and an upper bound on the
agents’ estimate error were presented. Moreover, the relationship
between the existing dual decomposition and consensus-based
methods for distributed optimization was revealed in Droge et al.
(2014), where both approaches were based on the subgradient
method, but one with a proportional control term and the other
with an integral control term.

When the optimal solution sets of agents’ individual convex ob-
jective functions have a nonempty intersection, the distributed op-
timization problem is equivalent to convex intersection problems
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(CIP) (Deutsch, 1983; Gubin, Polyak, & Raik, 1967; Lou, Shi, Johans-
son, & Hong, 2013, 2014; Nedić et al., 2010; Shi & Johansson, 2012;
Shi et al., 2013). A projected consensus algorithm was proposed
in Nedić et al. (2010) for a network to solve CIP, where all agents
were shown to converge to a common point in the intersection set
forweight-balanced and jointly connected communication graphs.
Later, a continuous-time dynamical system was designed and var-
ious connectivity conditions were discussed in Shi et al. (2013). In
addition, a random sleep algorithm was proposed with providing
conditions to converge almost surely to a common point in the in-
tersection set in Lou et al. (2013), with agents to randomly take
the neighbor-based average or projection onto their individual sets
based on a Bernoulli process. Almost all the existing optimization
results were obtained based on the assumption that the exact pro-
jection point onto convex sets can be obtained (Deutsch, 1983; Gu-
bin et al., 1967; Lin & Ren, 2012; Meng, Xiao, & Xie, 2013; Nedić
et al., 2010; Shi & Johansson, 2012; Shi et al., 2013).

On the other hand, the intersection of convex optimal solution
sets may be empty in practice. In this case, how to seek a
point with the shortest (quadratic) distance to these sets is also
important. For instance, the supply center location problem is
concerned with how to seek the location of raw materials supply
center so that the average transportation cost from this supply
center to the multiple factories is minimal (Francis, McGinnis, &
White, 1992; Pardalos & Romeijn, 2002); the source localization
in a sensor network is related to estimate the location of
the source emitting a signal based on the received signals of
multiple sensors in a noisy environment (Meng et al., 2013;
Zhang, Lou, Hong, & Xie, 2015). In fact, the problem for both
empty and nonempty intersection cases is referred to as the
shortest distance optimization problem (SDOP). Clearly, CIP is
a special case of SDOP, and the average consensus problem
is also a special case of SDOP since the optimal solution of
the minimum of the sum of quadratic functions from some
points is exactly the average of these points. Some distributed
algorithms were proposed to discuss SDOP. For example, Meng
et al. (2013) formulated a source localization problem as the SDOP
in a plane and proposed a discrete-time distributed algorithm,
with the adjacency matrices of communication graphs required
to be doubly stochastic. Moreover, Lin and Ren (2012) proposed
two distributed continuous-time algorithms to solve SDOP in the
empty intersection case for connected graphs: the first one was
designed for optimal consensus based on sign functions, and the
second one was modified to avoid chattering but only to achieve
the optimal consensus approximately.

The objective of this paper is to design a continuous-
time distributed protocol to solve SDOP based on approximate
projection. Note that the exact projection is usually hard to
obtain in practice. Therefore, approximate projection issues
were discussed in some situations, and for example, Lou et al.
(2014) proposed a discrete-time approximate projected consensus
algorithm to solve CIP. The motivation of the current research
aims at cooperatively solving SDOP with projection uncertainties
and continuous-time dynamics. For example, in a practical robotic
network to solve the SDOP, a robotmay not always obtain the exact
projection point of its own convex set, but only spot some point on
the set surface near the exact projection point. The contribution of
this paper can be summarized as follows.

• We propose a new concept of approximate projection when
the exact projection is hard to obtain. In fact, we consider
an approximate projection related to set boundary surfaces,
different from that defined in a ‘‘triangle’’ in Lou et al. (2014). To
overcome the difficulties resulting from this new approximate
projection, we employ a geometric method to convert the
original problem into a heterogeneous stepsize problem.
• Given any approximate angle, we show that, with the
proposed continuous-time algorithm, the agent states are
always bounded for any initial condition, and uniformly
bounded with respect to all initial conditions if the stepsize
is not too small. The result with respect to the continuous-
time algorithm is different from some results based on some
discrete-time ones. In fact, π/4 was shown to be the critical
approximate angle for the boundedness of the discrete-time
algorithmwith the approximate projection defined in a triangle
in Lou et al. (2014).

• We study SDOP in both nonempty and empty intersection
cases, and propose a unified protocol based on the approximate
projection. In fact, the proposed convergence conditions and
proofs in the two cases are quite different. Note that our
result is different from that in Lin and Ren (2012) because
we handle approximate projections without assuming that the
communication graph is always connected, and ours tackles
both nonempty and empty intersection cases, while Lou et al.
(2014) only does the nonempty intersection case.

Notations: 1 denotes the vector with all ones; yT denotes the
transpose of a vector y ∈ Rm; |y| denotes the Euclidean norm
of y; [v, z] denotes the line segment connecting the two points
v, z; line(v, z) denotes the line passing the two points v, z; for
a set K ⊆ Rm, int(K) and bd(K) = K\int(K) denote the sets
of interior points and boundary points of K , respectively; ⟨·, ·⟩
denotes the Euclidean inner product in Rm; the angle between
nonzero vectors y and z is denoted as ̸ (y, z) ∈ [0, π], where
cos ̸ (y, z) = ⟨y, z⟩/(|y| |z|); span{v1, . . . , vp} (aff{v1, . . . , vp})
denotes the subspace (affine hull) generated by vectors v1, . . . , vp.

2. Preliminaries

2.1. Graph theory

A multi-agent network can be described by a directed graph
G = (V, E), where V = {1, 2, . . . , n} is the node (or agent) set
and E ⊆ V × V the arc set with the arc (j, i) ∈ E describing that
node i can receive the information of node j. Here (i, i) ∉ E for all i.
Let Ni = {j ∈ V|(j, i) ∈ E} be the set of neighbors of node i. A path
from node i to node j in G is a sequence (i, i1), (i1, i2), . . . , (ip, j) of
arcs in E . Graph G is said to be strongly connected if there exists a
path from i to j for each pair of nodes i, j ∈ V . GraphG is undirected
when (j, i) ∈ E if and only if (i, j) ∈ E (Godsil & Royle, 2001).

The communication over the network under consideration is
switching and characterized by a directed graph process Gσ(t) =

(V, Eσ(t)), t ≥ 0, with Eσ(t) the arc set of the graph at time t . Here
σ : [0,∞) → Q is a piecewise constant function to describe
the time-varying graph process, where Q is the index set of all
possible graphs on V . Let∆ := {tk, k ≥ 0} with t0 = 0 denote the
set of all switching moments of switching graph Gσ . As usual, we
assume there is a dwell time τ > 0 between two consecutive graph
switchingmoments, i.e., tk+1−tk ≥ τ for all k. The switching graph
Gσ is uniformly jointly strongly connected (UJSC) if there exists
T > 0 such that the union graph (V,∪t≤s<t+T E(s)) is strongly
connected for t ≥ 0.

2.2. Convex analysis

A set K ⊆ Rm is convex if λz1 + (1 − λ)z2 ∈ K for any
z1, z2 ∈ K and 0 < λ < 1. For a closed convex set K in Rm,
we can associate with any z ∈ Rm a unique element PK (z) ∈ K
satisfying |z − PK (z)| = infy∈K |z − y| =: |z|K , where PK is called
the projection operator onto K . We have the following properties
for the projection operator PK (Rockafellar, 1972).
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Lemma 2.1. Let K be a closed convex set in Rm. Then

(i) ⟨y − PK (y), z − PK (y)⟩ ≤ 0 ∀y, ∀z ∈ K ;

(ii) |PK (y)− z| ≤ |y − z| ∀y, ∀z ∈ K ;

(iii) ⟨y − PK (y), z − y⟩ ≤ |y|K (|z|K − |y|K ) ∀y, z;
(iv) |PK (y)− PK (z)| ≤ |y − z| ∀y, z;

(v) ⟨y − z, PK (y)− PK (z)⟩ ≥ |PK (y)− PK (z)|2 ∀y, z;
(vi) |PK (y)− PK (z)| = |y − z| if and only if

y − PK (y) = z − PK (z).

Proof. (i) is an equivalent definition of convex projection;
(ii) comes from Lemma 1(b) in Nedić et al. (2010). We now show
(iii). First of all, ⟨y − PK (y), PK (z) − PK (y)⟩ ≤ 0 by (i). Clearly,
⟨y − PK (y), z − PK (z)⟩ ≤ |y|K |z|K . Then

⟨y − PK (y), z − y⟩ = ⟨y − PK (y), z − PK (z)+ PK (z)
− PK (y)+ PK (y)− y⟩ ≤ |y|K |z|K − |y|2K ,

which implies (iii). (iv) is the standard non-expansive property,
and (v) follows from

⟨y − z, PK (y)− PK (z)⟩ = ⟨y − PK (y), PK (y)− PK (z)⟩
+ |PK (y)− PK (z)|2 + ⟨PK (z)− z, PK (y)− PK (z)⟩

≥ |PK (y)− PK (z)|2

because ⟨y − PK (y), PK (y) − PK (z)⟩ ≥ 0 and ⟨PK (z) − z, PK (y) −

PK (z)⟩ ≥ 0 by (i).
For (vi), the sufficiency is obvious. The necessity can be obtained

from

|y − PK (y)− (z − PK (z))|2 = |y − z|2

+ |PK (z)− PK (y)|2 + 2⟨y − z, PK (z)− PK (y)⟩
= 2|y − z|2 + 2⟨y − z, PK (z)− PK (y)⟩
≤ 2|y − z|2 − 2|PK (y)− PK (z)|2 = 0,

where the inequality follows from (v). �

The following lemma can be found on page 24 in Aubin and Cellina
(1984).

Lemma 2.2. For a closed convex set K in Rm, |x|2K is continuously
differentiable and ∇|x|2K = 2(x − PK (x)).

A function ϕ(·) : Rm
→ R is said to be convex if ϕ(λz1 + (1 −

λ)z2) ≤ λϕ(z1)+ (1− λ)ϕ(z2) for any z1, z2 ∈ Rm and 0 < λ < 1.
For a continuously differentiable convex function ϕ, it holds that
ϕ(y) ≥ ϕ(x)+ ⟨y − x,∇ϕ(x)⟩, ∀x, y.

The upper Dini derivative of function g : (a, b) → R at t ∈

(a, b) is defined asD+g(t) = lim sups→0+
g(t+s)−g(t)

s . The following
result was shown in Danskin (1966).

Lemma 2.3. Let gi(t, x) : R × Rm
→ R, i = 1, . . . , n be continu-

ously differentiable. Then D+g(t, x(t)) = maxi∈I(t) ġi(t, x(t)), where
g(t, x) = max1≤i≤n gi(t, x), I(t) =


i|gi(t, x(t)) = g(t, x(t)), 1 ≤

i ≤ n

.

2.3. Consensus

Consider the following consensus model with disturbancewi,

żi(t) =


j∈Ni(t)

(zj(t)− zi(t))+ wi(t), i = 1, . . . , n, (1)

where the disturbance wi(t) : [0,∞) → R is continuous. System
(1) has a continuous solution, which satisfies (1) for almost all t
except at the switching moments of switching graph Gσ . The next
lemma can be obtained from the proof of Proposition 4.10 in Shi
and Johansson (2013).
Fig. 1. The approximate projection of point v onto closed convex set K .

Lemma 2.4. Suppose the switching graph Gσ of system (1) is UJSC
and limt→∞wi(t) = 0 for all i. Then consensus is achieved for
system (1), i.e., for any initial condition, limt→∞ |zi(t) − zj(t)| = 0
for all 1 ≤ i, j ≤ n.

3. Problem formulation and algorithm

In this section, we introduce the distributed SDOP and propose
a distributed continuous-time approximate projected algorithm.

Consider a network of n agents (or nodes) and bounded closed
convex sets Xi ⊆ Rm for i = 1, . . . , n, with Xi only associated with
(or known by) agent i. The goal of the network is to cooperatively
find a point x∗ with the shortest quadratic distance from the n
closed convex sets:

x∗
∈ argmin f (x), f (x) =

n
i=1

|x|2Xi . (2)

Projection-based methods have been widely adopted in the
literature to solve CIP and constrained optimization problems,
and almost all methods require that the exact projection can be
obtained (Johansson et al., 2009; Lin&Ren, 2012;Meng et al., 2013;
Nedić et al., 2010; Shi & Johansson, 2012; Shi et al., 2013). Since the
exact projection may be difficult to obtain in practice, each agent
may only obtain an approximate projection point located on the
convex set surface and near the exact projection point. To be strict,
we give the following definition.

Definition 1. Let 0 ≤ θ < π/2 and K be a closed convex set in Rm.
Define sets

CK (v, θ) = v +

z|⟨z, PK (v)− v⟩ ≥ |z| |v|K cos θ


,

b(v, K) =

z|z ∈ bd(K), [v, z] ∩ bd(K) = {z}


.

The approximate projection Pa
K (v, θ) of point v onto K is defined

as the following set:

Pa
K (v, θ) =


CK (v, θ) ∩ b(v, K), if v ∉ K ;

{v}, otherwise.

As shown in Fig. 1, the cone CK (v, θ) − v consists of all vectors
having angle with the direction PK (v) − v not greater than θ , and
b(v, K) is the region on the boundary of K that the agent can
‘‘see’’ starting from point v. Clearly, the exact projection PK (v) ∈

Pa
K (v, θ) for any v ∈ Rm and 0 ≤ θ < π/2 and Pa

K (v, 0) = {PK (v)}.

Remark 3.1. Approximate projections are more ‘‘practical’’ than
the exact projection. For example, in reality, when a robot
approaches its (convex) target set, it may not get the exact
projection. Instead, it may select another point on the set surface
as the exact one by mistake or to avoid expensive measurement or
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Fig. 2. An illustration for Ph
Xi
(v).

tedious computation. Then the selected projection point becomes
an approximate one. In other words, this concept captures the
situation when agents can only obtain some point on the set
surface, which may not be but close to the exact projection point.
Note that this concept is different from that given in Lou et al.
(2014), where the approximate projection point is located in a
‘‘triangle’’ region specified by v, the hyperplane of K on PK (v) and
the approximate angle θ .

We next give some basic assumptions for our following analysis.
A1 (Connectivity) The switching graph Gσ is UJSC.
A2 (Convex sets) (i) The boundary surfaces of convex setsXi, i =

1, . . . , n are regular (or smooth);
(ii) The convex set Xi contains nonempty interior points for

i = 1, . . . , n.
The definition of regularity or smoothness of a manifold can be

easily found (referring to Definition 1 on page 52 in do Carmo, 1976
for more details). Note that the Gaussian curvature of regular (or
smooth) surfaces of closed bounded sets are bounded. In fact, A2
is quite mild. The boundaries of many well-known sets, such as
the surfaces of spheres, ellipsoids, are regular; and moreover, the
assumption that set Xi ⊆ Rm contains nonempty interior points is
equivalent to dim(Xi) = m (dim(Xi) denotes the dimension of the
affine hull of set Xi), which was also widely used in the literature.

Let Pa
Xi
(·) : Rm

→ Rm be a continuous map with Pa
Xi
(v) ∈

Pa
Xi
(v, θi(v)) for any v, where

θi(v) = ̸ (Pa
Xi(v)− v, PXi(v)− v),

0 ≤ θi(v) < π/2. Let θi(v) = 0 for simplicity when v ∈ Xi. In
this paper, θi(v) is referred to as the approximate angle of v onto
Xi. The following assumption was used in Lou et al. (2014).

A3 (Approximate angle) There exists 0 < θ∗ < π/2 such that
0 ≤ θi(v) ≤ θ∗ for all i, v.

Here we propose a distributed continuous-time approximate
projected algorithm:

ẋi(t) =


j∈Ni(t)

(xj(t)− xi(t))

+ αt(Pa
Xi(xi(t))− xi(t)), i = 1, . . . , n, (3)

where xi ∈ Rm is the state estimate of agent i for optimal solutions,
Ni(t) is the neighbor set of node i at time t , {αt} is the stepsize
(0 ≤ αt ≤ α∗, α∗ > 0) and is uniformly continuous over t . The
continuity of stepsize αt and maps Pa

Xi
(·) guarantees that (3) has a

solution that is continuous over [0,∞) and continuously differen-
tiable except at the switching moments of switching graph Gσ .

The convergence analysis of (3) is not easy because the gradient
term is corrupted with state-dependent approximation and there
is no explicit expression to describe the relationship between the
approximate projection point and the exact one. To handle the
problem, we make some transformation. In the case of v ∉ Xi,
we define by Ph

Xi
(v) the intersection point of the hyperplane of Xi

at PXi(v) (the tangent plane of bd(Xi) at PXi(v)) with PXi(v) − v as
the normal direction and the line segment [v, Pa

Xi
(v)], as shown in

Fig. 2. Clearly, Ph
Xi
(v) = PXi(v) when Pa

Xi
(v) = PXi(v). In the case

of v ∈ Xi, we define Ph
Xi
(v) = Pa

Xi
(v) = v. Then we can find that

Ph
Xi
(v) = v if and only if v ∈ Xi. We write

Pa
Xi(v)− v = γXi(v)(P

h
Xi(v)− v),

where γXi(v) =
|PaXi

(v)−v|

|PhXi
(v)−v|

≥ 1 if Ph
Xi
(v) ≠ v, and γXi(v) = 1

otherwise.
Rewrite αt(Pa

Xi
(xi(t))− xi(t)) = αi,t(Ph

Xi
(xi(t))− xi(t)), with the

virtual stepsize of agent i defined as

αi,t =


γXi(xi(t))αt

=
|Pa

Xi
(xi(t))− xi(t)|

|Ph
Xi
(xi(t))− xi(t)|

αt , if Ph
Xi(xi(t)) ≠ xi(t);

αt , otherwise.

Clearly, αi,t ≥ αt . Although the designed stepsize αt is the same
for all agents, agent i has its own virtual stepsize αi,t based on its
own approximate projection. We express (3) in another form with
heterogeneous virtual stepsizes:

ẋi(t) =


j∈Ni(t)

(xj(t)− xi(t))

+ αi,t(Ph
Xi(xi(t))− xi(t)), i = 1, . . . , n. (4)

Then we describe our problem as follows.

Definition 2. The shortest distance optimization problem (SDOP)
is solved by (3) or (4) if, for any initial condition xi(0) ∈ Rm,
i = 1, . . . , n, there exists x∗

∈ argmin
n

i=1 |x|2Xi such that
limt→∞ xi(t) = x∗, i = 1, . . . , n.

In the following three sections, we first establish some basic
results, and then present the convergence results in nonempty
intersection and empty intersection cases.

4. Discussions on boundedness and stepsizes

In this section, we show the state boundedness and establish
an ‘‘equivalent’’ relationship between the designed stepsize αt and
the virtual stepsize αi,t .

4.1. Boundedness of system states

Denote θi,t = θi(xi(t)) for simplicity. Note that θi,t is also
equal to ̸ (Ph

Xi
(xi(t))− xi(t), PXi(xi(t))− xi(t)). Here we study the

boundedness of xi(t), i ∈ V, t ≥ 0 of (4) with the approximate
angle θi,t .

Let Xc = co{Xi, i = 1, . . . , n} be the convex hull of the sets
Xi, i = 1, . . . , n, ξ := supz1,z2∈Xc |z1 − z2|, which is finite due to
the boundedness of Xis.

Theorem 4.1. (i) For any initial condition xi(0), i ∈ V , the system
states xi(t), i ∈ V, t ≥ 0 are bounded.

(ii) Suppose lim inft→∞ αt > 0. Then, for any 0 < θ < π/2 and any
initial condition xi(0), i ∈ V ,

lim sup
t→∞

|xi(t)|Xc

≤ max
 ξ

sin θ
, ξ


tan θ +


(tan θ)2 + 2 tan θ


.

Furthermore, if A3 holds, then for any initial condition xi(0), i ∈

V , lim supt→∞ |xi(t)|Xc ≤ ξ

tan θ∗

+

(tan θ∗)2 + 2 tan θ∗


.
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Proof. Let t ∉ ∆. Denote h̄i(t) =
1
2 |xi(t)|

2
Xc , h̄(t) = max1≤i≤n h̄i(t).

By Lemmas 2.2 and 2.3, we have

D+h̄(t) = max
i∈I(t)

⟨xi(t)− PXc (xi(t)), ẋi(t)⟩

= max
i∈I(t)


xi(t)− PXc (xi(t)),


j∈Ni(t)

(xj(t)− xi(t))

+αi,t(Ph
Xi(xi(t))− xi(t))


(5)

whereI(t) =

i|i ∈ V, h̄i(t) = h̄(t)


. Take i ∈ I(t). Lemma2.1(iii)

implies that, for any j,

⟨xi − PXc (xi), xj − xi⟩ ≤ |xi|Xc (|xj|Xc − |xi|Xc ) ≤ 0. (6)

According to Lemma 2.1(i), ⟨xi − PXc (xi), PXi(xi)− PXc (xi)⟩ ≤ 0 due
to Xi ⊆ Xc . Therefore,

⟨xi − PXc (xi), PXi(xi)− xi⟩ ≤ −|xi|2Xc . (7)

Moreover, recalling the definitions of Ph
Xi
(xi(t)) and θi,t , we have

⟨xi(t) − PXi(xi(t)), P
h
Xi
(xi(t)) − PXi(xi(t))⟩ = 0 and |Ph

Xi
(xi(t)) −

PXi(xi(t))| = tan θi,t |xi(t)|Xi . Then

⟨xi(t)− PXc (xi(t)), P
h
Xi(xi(t))− PXi(xi(t))⟩

≤ |PXi(xi(t))− PXc (xi(t))||P
h
Xi(xi(t))− PXi(xi(t))|

≤ ξ tan θi,t(|xi(t)|Xc + ξ). (8)

Thus, based on (7) and (8), we have

⟨xi(t)− PXc (xi(t)), P
h
Xi(xi(t))− xi(t)⟩

≤ −|xi(t)|2Xc + ξ tan θi,t(|xi(t)|Xc + ξ). (9)

With (5), (6), (9) and i ∈ I(t), we obtain D+h̄(t) ≤ αi,t(−2h̄(t) +

ξ tan θi,t(
√
2h̄(t) + ξ)). We complete the proof by the following

analysis.

(i) It is easy to see that for any 0 < θ̂ < π/2, θi,t ≤ θ̂ when
|xi(t)|Xc ≥

ξ

sin θ̂
. Then D+h̄(t) ≤ 0 when t ∉ ∆ and h̄(t) ≥

max


ξ2

2(sin θ̂ )2
,
ξ2(tan θ̂ )2

4 +
ξ2 tan θ̂

2


1 +

√
(tan θ̂ )2+4 tan θ̂

2


. Hence,

system states are bounded for any initial condition.
(ii) Let α∗ = (lim inft→∞ αt)/2 > 0 and t̂ be the moment such

that when t ≥ t̂ , αi,t ≥ αt ≥ α∗. Then D+h̄(t) ≤ −α∗h̄(t) once
t ≥ t̂ , t ∉ ∆ and h̄(t) ≥ max


ξ2

2(sin θ)2
, ξ 2(tan θ)2+ξ 2 tan θ


1+

(tan θ)2 + 2 tan θ


. Therefore, h̄(t) is not greater than the
number in the preceding inequality when t ≥ t̂ and t ∉ ∆.
The second conclusion can be obtained directly based on the
above arguments.

Thus, the conclusion follows from the continuity of xi(t). �

Adiscrete-time algorithmwasproposed in Lou et al. (2014) to solve
CIP with approximate projection, where it was found that in the
case of αi,k ≡ 1 and θi,k ≡ θ , the states are uniformly bounded
with respect to all initial conditionswhen θ < π/4 andunbounded
for most all initial conditions when θ > π/4. Different from
this critical approximate angle result, Theorem 4.1 shows that the
continuous-time system states are always bounded for any initial
condition no matter how large θ is, and moreover, the states are
uniformly bounded for all initial conditions with fixing αi,t ≡ 1.

4.2. Equivalence between stepsizes

To obtain the convergence conditions, we establish a relation-
ship between the designed stepsizeαt and virtual stepsizesαi,t . Let
S = Xc +B(0, r0), where B(0, r0) denotes the ball with center zero
and radius r0 > 0. Denote µi(v) = ̸ (PXi(v)− Pa

Xi
(v), v − Pa

Xi
(v)).
Lemma 4.1. Suppose A2 and A3 hold. Then

inf
v∈S\Xi,PaXi

(v)≠PXi (v)
µi(v) > 0.

The proof is in the Appendix. Because the states of (4) are bounded
by Theorem 4.1, we take sufficiently large r0 such that S contains
all the system states. We next show that A2 and A3 imply the
equivalence between {αt} and {αi,t}.

Clearly, αt = αi,t when xi(t) ∈ Xi or Pa
Xi
(xi(t)) = PXi(xi(t)).

Then we only need to focus on the case when xi(t) ∉ Xi and
Pa
Xi
(xi(t)) ≠ PXi(xi(t)). Clearly, we can find that for any v ∈ S\X

and Pa
X (v) ≠ PX (v),

γX (v) = 1 +
|Pa

X (v)− Ph
X (v)|

|Ph
X (v)− PX (v)|

sin θ(v) ≤ 1 +
sin θ(v)
sinµ(v)

.

Therefore, γXi(xi(t)) ≤ 1 +
sin θi,t
sinµi,t

with µi,t := µi(xi(t)). Then by
Lemma 4.1 we have the following result.

Theorem 4.2. Under A2 and A3,

αt ≤ αi,t ≤ Ci,tαt ≤ Ciαt , ∀t, (10)

where Ci,t = 1 +
sin θi,t
sinµi

, Ci = 1 +
1

sinµi
,

µi := inf
t≥0,xi(t)∉Xi,PaXi

(xi(t))≠PXi (xi(t))
µi,t

≥ inf
v∈S\Xi,PaXi

(v)≠PXi (v)
µi(v) > 0.

In fact, (10) somehow characterizes the bounded bending property
of smooth surfaces, which helps convert the convergence condi-
tions on αi,t into the conditions on αt .

Remark 4.1. As Theorem 4.2 shows, A2 and A3 guarantee the
equivalence between the designed stepsize and the virtual
stepsize. In fact, with (10), we found that under A1, the optimal
convergence established in the next two sections holds for general
convex sets (not necessary to satisfy A2 and A3).

5. Nonempty intersection case

In this section,we show the convergence result in thenonempty
intersection case, ∩n

i=1 Xi ≠ ∅. Clearly, X0 := ∩
n
i=1 Xi is the optimal

solution set of min
n

i=1 |x|2Xi .

Theorem 5.1. Suppose A1–A3 hold and ∩
n
i=1 Xi ≠ ∅. Then SDOP is

solved by system (4) if


∞

0 αtdt = ∞,


∞

0 αt tan θ+

t dt < ∞, where
θ+

t = max1≤i≤n θi,t .

Proof. Denote α+

t = max1≤i≤n αi,t . From (10), we find that
∞

0 αtdt = ∞,


∞

0 αt tan θ+

t dt < ∞ are equivalent to


∞

0 α+

t dt =

∞,


∞

0 α+

t tan θ+

t dt < ∞, respectively.
Denote the distance functions h(t) = max1≤i≤n hi(t), hi(t) =

1
2 |xi(t)|

2
X0
, h+

i = lim supt→∞ hi(t), and h−

i = lim inft→∞ hi(t).
Under the hypotheses, by Lemmas 2.1–2.3 and the similar
arguments in Lemma 4.3 in Shi et al. (2013), we can successively
show the following four conclusions: (i) D+h(t) ≤ 2α+

t tan θ+

t h(t)
for any t ∉ ∆; (ii) the limit limt→∞ h(t) =: h∗ exists; (iii) if there
is some node i0 such that h−

i0
< h∗, then h∗

= 0; (iv) for any
z ∈ X0, limt→∞ max1≤i≤n |xi(t) − z|2 exists. It follows from the
fourth conclusion that all agents will converge to a common point
in X0 if the consensus is achieved and h∗

= 0. Thus, it suffices to
show that consensus is achieved and h∗

= 0.
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Because

|Ph
Xi(xi(t))− xi(t)| =

|xi(t)|Xi
cos θi,t

≤

√
2h(t)

cos θ∗
, (11)

it follows that, if h∗
= 0, the second term on the right-hand side of

(4) tends to zero as t → ∞ and then the consensus is achieved for
system (4) by Lemma 2.4. Therefore, it suffices to show h∗

= 0 in
what follows.

In fact, if there is some node i0 with h−

i0
< h∗, then h∗

= 0 from
the previous statements. Therefore, we need to prove h∗

= 0 from
h+

i = h−

i = h∗, ∀i by contradiction. Clearly, for any ε > 0, there
is t̄ > 0 such that when t ≥ t̄ , |xi(t)|X0 ≤

√
2h∗ + ε =: φ. We

complete the proof by the following two steps.
Step (i). Suppose h+

i = h−

i = h∗ > 0, ∀i. We claim that
consensus can be achieved for system (4).

We first show that limt→∞ αi,t |xi(t)|2Xi = 0 by contradiction.
Hence suppose there exist i0 and an increasing subsequence {sk}k≥0
with limk→∞ sk = ∞ such thatαi0,sk |xi0(sk)|

2
Xi0

≥ c for some c > 0.
Without loss of generality, we assume s0 is sufficiently large such
that s0 ≥ t̄ and


∞

s0
α+

t tan θ+

t dt ≤ ε/
√
2h∗.

FromLemma2.2, the boundedness of system states and (11),we
know that |xi0(t)|

2
Xi0

is uniformly continuous on [0,∞). This along

with the uniform continuity of αt again implies that αt |xi0(t)|
2
Xi0

is also uniformly continuous on [0,∞). Therefore, there is δ > 0
such that αi0,t |xi0(t)|

2
Xi0

≥ c/2 when sk ≤ t ≤ sk + δ. Without loss
of generality, we assume [sk, sk + δ] ∩∆ = ∅ for all k. We have

dhi0(t)
dt

≤


j∈Ni0 (t)

|xi0(t)|X0(|xj(t)|X0 − |xi0(t)|X0)

− αi0,t |xi0(t)|
2
Xi0

+ αi0,t tan θi0,t |xi0(t)|
2
X0

and then for sk ≤ t ≤ sk + δ,

D+
|xi0(t)|X0 ≤


j∈Ni0 (t)

(|xj(t)|X0 − |xi0(t)|X0)

−

αi0,t |xi0(t)|
2
Xi0

φ
+ αi0,t tan θ

+

t φ

≤ (n − 1)

φ − |xi0(t)|X0


−

c
2φ

+ α+

t tan θ+

t φ, (12)

which leads to

|xi0(sk + δ)|X0 ≤ ζ (
√
2h∗ + ε)+ (1 − ζ )

×

√
2h∗ + ε −

c
2(n − 1)φ


+ ε

√
2h∗ + ε
√
2h∗

, (13)

where 0 < ζ = e−(n−1)δ < 1. We can find that the right-hand side
of (13) is less than

√
2h∗ −

c(1−ζ )
4(n−1)

√
2h∗

when ε is sufficiently small,

which contradicts limt→∞ hi0(t) = h∗. Thus, limt→∞ αi,t |xi(t)|2Xi =

0, ∀i. From Theorem 4.2 we have 0 ≤ αi,t ≤ Ciα
∗, and hence

limt→∞ αi,t |xi(t)|Xi = 0, ∀i. According to the equality in (11) and
Lemma 2.4, consensus is achieved for system (4).

Step (ii). Suppose h+

i = h−

i = h∗ > 0,∀i. We will show that
lim inft→∞

n
i=1 |xi(t)|2Xi = 0 by contradiction.

Hence suppose there is b > 0 such that
n

i=1 |xi(t)|2Xi ≥ b
for all sufficiently large t . Let |x(t)|X0 = (|x1(t)|X0 , . . . , |xn(t)|X0)

T ,
y(t) = (|x1(t)|2X1 , . . . , |xn(t)|

2
Xn)

T , D(t) = diag{α1,t , . . . , αn,t} (a
diagonal matrix with diagonal entries αi,t ). Then by (12) we have

D+
|x(t)|X0 ≤ −Lσ(t)|x(t)|X0 −

1
φ
D(t)y(t)+ φα+

t tan θ+

t 1,
where Lσ(t) is the Laplacian of graph Gσ(t) with (Lσ(t))ij = −1 if
j ∈ Ni(t), (Lσ(t))ij = 0 if j ≠ i, j ∉ Ni(t) and (Lσ(t))ii = |Ni(t)|.
Recall that tk, k ≥ 0 are all the switching moments of switching
graph Gσ with tk+1 − tk ≥ τ , ∀k. It is easy to see that we can add
somenew ‘‘switchingmoments’’ in {tk}k≥0, denoted as {t ′k}k≥0, such
that 2τ ≥ t ′k+1 − t ′k ≥ τ , ∀k. Therefore,

|x(t ′k+1)|X0 ≤ e
−L

σ(t′k)
(t ′k+1−t ′k)

|x(t ′k)|X0

+

 t ′k+1

t ′k

e
−L

σ(t′k)
(t ′k+1−t)

−
D(t)y(t)
φ

+ φα+

t tan θ+

t 1

dt.

Note that for any s > 0, e
−sL

σ(t′k) is a stochastic matrix (with
nonnegative entries and all row sums are ones) and the graphGσ(t ′k)

is a subgraph of the graph associated with matrix e
−sL

σ(t′k) . Then
applying the similar arguments given in the proof of Theorem 4.1
in Lou et al. (2014)we can show that lim inft→∞

n
i=1 |xi(t)|2Xi = 0.

Then there is a subsequence {sk}k≥0 with limk→∞ sk = ∞ such
that limk→∞ |xi(sk)|Xi = 0 for all i. Because we have shown that
consensus is achieved in Step (i), limk→∞ |xi(sk)|Xj = 0 for all i, j,
which leads to limk→∞ hi(sk) = 0 for all i. Thus, h∗

= limt→∞

hi(t) = 0, which contradicts h+

i = h−

i = h∗ > 0. It follows that
h+

i = h−

i = h∗
= 0 and then the conclusion is proved. �

Remark 5.1. When the intersection set of Xis is nonempty, SDOP
(2) is equivalent to CIP of finding a point in X0 (Deutsch, 1983;
Gubin et al., 1967; Lou et al., 2013, 2014; Meng et al., 2013; Nedić
et al., 2010; Shi & Johansson, 2012; Shi et al., 2013). The optimal
consensus algorithm based on the exact projection presented in
Shi et al. (2013) is a special case of (3) with taking αt ≡ 1 and
θi,t ≡ 0, which is consistent with Theorem 5.1. Theorem 5.1 is
also consistent with the convex intersection computation results
of discrete-time algorithms in Lou et al. (2014), Meng et al. (2013)
and Nedić et al. (2010).

6. Empty intersection case

At first we give a convergence result for the empty intersection
case (that is, ∩n

i=1 Xi = ∅).

Theorem 6.1. Suppose A1–A3 hold, Gσ(t), t ≥ 0 are undirected and
∩

n
i=1 Xi = ∅. Then SDOP is solved by system (4) if


∞

0 αtdt = ∞,
∞

0 α2
t dt < ∞ and


∞

0 αt tan θ+

t dt < ∞.

Proof. We rewrite (4) as ẋi(t) =


j∈Ni(t)
(xj(t) − xi(t)) +

αt(Ph
Xi
(xi(t))−xi(t))+φi(t), where φi(t) = (αi,t −αt)(Ph

Xi
(xi(t))−

xi(t)). Denote x̄(t) =
1
n

n
i=1 xi(t). From the definition of Ph

Xi
, we

have |Ph
Xi
(xi(t)) − xi(t)| =

|xi(t)|Xi
cos θi,t

≤
η

cos θi,t
, where η = supi,j,t

{|xi(t) − x∗
|, |x̄(t)|Xi , |xi(t)|Xj} is a finite number by Theorem 4.1.

Moreover, it follows from (10) that

|αi,t − αt | ≤ (Ci,t − 1)αt ≤
1

sinµi
αt sin θi,t .

Therefore,

|φi(t)| ≤
η

sinµi
αt tan θi,t . (14)

Take x∗
∈ argmin

n
i=1 |x|2Xi . Let t ∉ ∆. Because Gσ(t) is

undirected,

d
n

i=1
|xi(t)− x∗

|
2

dt
≤ 2αt

n
i=1


xi(t)− x∗,

Ph
Xi(xi(t))− xi(t)


+ 2

n
i=1


xi(t)− x∗, φi(t)


. (15)
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Then we estimate the first term in (15). Note that
xi(t)− x∗, Ph

Xi(xi(t))− PXi(xi(t))


≤ |xi(t)− x∗
| tan θi,t |xi(t)|Xi ≤ η2 tan θ+

t . (16)

We also have
n

i=1


xi(t)− x∗, PXi(xi(t))− xi(t)


= −


x̄(t)− x∗,

n
i=1

(x̄(t)− PXi(x̄(t)))

+ ϱ(t), (17)

where ϱ(t) =
n

i=1


xi(t)− x̄(t), PXi(x̄(t))− x̄(t)


+

n
i=1


xi(t)−

x∗, PXi(xi(t))− PXi(x̄(t))+ x̄(t)− xi(t)

.

Clearly, the first term in ϱ(t) is not greater than η
n

i=1 |xi(t)−
x̄(t)| and the second term in ϱ(t) is not greater than 2η

n
i=1 |xi(t)

− x̄(t)| by Lemma 2.1(iv). Moreover, by (14), the second term
in (15) is not greater than 2nη2αt tan θ+

t / sinµ−, where µ− =

min1≤i≤n µi. Denote ψ(t) = ⟨x̄(t) − x∗,
n

i=1(x̄(t) − PXi(x̄(t)))⟩,
ς(t) = 6η(

n
i=1 αt |xi(t) − x̄(t)|) + 2nη2(1 +

1
sinµ−

)αt tan θ+

t . In
light of (15)–(17), we have

d
n

i=1
|xi(t)− x∗

|
2

dt
≤ −2αtψ(t)+ ς(t) ≤ ς(t) (18)

because ψ(t) is nonnegative, following from the convexity of
objective function f , i.e., ψ(t) = ⟨x̄(t) − x∗, 1

2∇f (x̄(t))⟩ ≥

1
2 (f (x̄(t))− f (x∗)) ≥ 0.

By a similar analysis technique given in the proof of Lemma 8 in
Nedić et al. (2010), we can show


∞

0

n
i=1 αt |xi(t)− x̄(t)|dt < ∞.

This combined with


∞

0 αt tan θ+

t dt < ∞ and (18) implies that
limt→∞

n
i=1 |xi(t)−x∗

|
2 is a finite number. Hence, it follows from

(18) that 2


∞

0 αtψ(t)dt =


∞

0 αt⟨x̄(t) − x∗,∇f (x̄(t))⟩dt < ∞.
Due to


∞

0 αtdt = ∞, there exists a subsequence {sr}r≥0 such
that limr→∞⟨x̄(sr) − x∗,∇f (x̄(sr))⟩ = 0. Since system states are
bounded, without loss of generality we assume limr→∞ x̄(sr) = x̂
for some x̂ (otherwisewe can further find a subsequence of {sr}r≥0).
Since∇f is continuous, ⟨x̂−x∗,∇f (x̂)⟩ = 0, which leads to f (x∗) ≥

f (x̂)+ ⟨x∗
− x̂,∇f (x̂)⟩ = f (x̂). Thus, x̂ ∈ argmin f .

Replacing x∗ with x̂, we can similarly show that limt→∞

n
i=1

|xi(t) − x̂|2 is also a finite number denoted as ρ. Moreover, the
uniform continuity of αt and


∞

0 α2
t dt < ∞ imply limt→∞ αt = 0.

As a result, the consensus is achieved by Lemma 2.4 and then
limr→∞ xi(sr) = x̂. Hence, ρ = 0, and therefore, limt→∞ xi(t) = x̂
for all i, which leads to the conclusion. �

From Theorems 5.1 and 6.1, we find that the sufficient optimal
consensus conditions are essentially different in these two cases.
In addition to the conditions in the nonempty intersection case,
the square integrability condition is usually required in the empty
intersection case.

Theorem 6.1 showed that all agents consensually converge to
an optimal solution of min

n
i=1 |x|2Xi under certain conditions.

Next, we show some properties of the optimal solution set of
min

n
i=1 |x|2Xi , denoted as X∗. According to Lemma 2.2, an optimal

solution x∗
∈ X∗ must satisfy ∇

n
i=1 |x∗

|
2
Xi

= 2
n

i=1(x
∗

−

PXi(x
∗)) = 0, or equivalently, x∗

=

n
i=1 PXi (x

∗)

n . Then we have the
following results.

Theorem 6.2. (i) For any x∗
∈ X∗, y∗

∈ X∗, we have x∗
−PXi(x

∗) =

y∗
− PXi(y

∗), i = 1, . . . , n;
(ii) For any i, either X∗

⊆ Xi or X∗
∩ Xi = ∅;

(iii) Let x∗
∈ X∗, x∗

∉ Xi for some i. Then X∗
∩ line (x∗, PXi(x

∗)) =

{x∗
}.
Proof. (i) It follows from x∗
=

n
i=1 PXi (x

∗)

n , y∗
=

n
i=1 PXi (y

∗)

n and
Lemma 2.1(iv) that

|x∗
− y∗

| =


n

i=1
(PXi(x

∗)− PXi(y
∗))

n


≤

n
i=1

|PXi(x
∗)− PXi(y

∗)|

n
≤ |x∗

− y∗
|.

Therefore, |PXi(x
∗)−PXi(y

∗)| = |x∗
−y∗

| for all i, which implies the
conclusion by Lemma 2.1(vi).

(ii) This is straightforward from (i).
(iii) Let z∗

∈ X∗
∩ line(x∗, PXi(x

∗)), z∗
≠ x∗. If z∗ locates the

half-line with PXi(x
∗) as the starting point and x∗

− PXi(x
∗) as

the direction, then PXi(z
∗) = PXi(x

∗). Therefore, x∗
− PXi(x

∗) ≠

z∗
−PXi(z

∗), which contradicts what was proven in (i) since both x∗

and z∗ are optimal solutions. If z∗ locates the half-line with PXi(x
∗)

as the starting point and PXi(x
∗)− x∗ as the direction, then PXi(x

∗)
is also an optimal solution since the optimal solution set X∗ is a
convex set and PXi(x

∗) can be written as a convex combination of
x∗, z∗. Then 0 = PXi(x

∗) − PXi(PXi(x
∗)) ≠ x∗

− PXi(x
∗), which

also yields a contradiction since both x∗ and PXi(x
∗) are optimal

solutions. Thus, the conclusion follows. �

7. Numerical examples

In this section, we provide an example to illustrate the above
results. Consider a network of three agents with node set V =

{1, 2, 3}. The convex set Xi of each agent i is the ball in R2 with
center ci and radius ri. Let αt =

20
t+20 , θi,t =

1
t+50 , which satisfy

the conditions in Theorems 5.1 and 6.1. We next present the
state trajectories of the three agents for the nonempty and empty
intersection cases from time t = 0 to t = 2000, respectively.

(i) Nonempty intersection case with c1 = (−1, 0), c2 = (1, 0),
c3 = (0,−2), r1 = 2, r2 = 1, r3 = 2. The graphs are peri-
odically switching over the two directed graphs G1 = (V, E1),
G2 = (V, E2) with period 1, where E1 = {(2, 1), (3, 2)}, E2 =

{(1, 3)}. The initial conditions are x1(0) = (−4, 3), x2(0) =

(3, 5), x3(0) = (−6,−3), which are marked as ◦ in Fig. 3.
(ii) Empty intersection case with c1 = (−

√
3, 0), c2 = (

√
3, 0),

c3 = (0,−3), r1 = r2 = r3 = 1. In this case,
the (unique) optimal solution is (0,−1). The graphs are
periodically switching over the two undirected graphs G1 =

(V, E1), G2 = (V, E2)with period 1, where E1 = {(3, 2)}, E2 =

{(1, 2)}. The initial conditions are x1(0) = (−3, 3), x2(0) =

(4, 2), x3(0) = (−5,−3), which are marked as ◦ in Fig. 4.

8. Conclusions

In this paper, a continuous-time method was proposed to
cooperatively solve the SDOP by a group of agents that could
only obtain their approximate projections and the communication
graph among agents was UJSC. It was shown that system states
were always bounded for any constant approximate angle, and
uniformly bounded for any stepsize with inferior limit greater
than zero. Both nonempty intersection and empty intersection
cases of convex sets were investigated with respective sufficient
conditions.
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Fig. 3. In the nonempty intersection case, all agents converge to a common point
in the intersection set.
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Fig. 4. In the empty intersection case, all agents converge to the unique optimal
solution (0,−1).

Appendix. Proof of Lemma 4.1

In this proof, we simplify θi, µi, and Xi as θ , µ, and X ,
respectively. Consider the following relation

cone(v, CX (v, θ) ∩ b(v, X)) = CX (v, θ) (19)

where cone(v,M) = {v + λ(z − v)|λ ≥ 0, z ∈ M} for some set
M ⊆ Rm. We claim that (19) holds for θ∗ and any v ∈ S\X with
sufficiently small |v|X , θ∗ is the approximate angle given in A3.

We first show by contradiction int(X) ∩ line(v, PX (v)) ≠ ∅

for any v ∈ bd(S). For a regular surface, its tangent plane at
boundary point z consists of the tangent vectors at point z of all
curves passing z. Suppose that there is v ∈ bd(S) with int(X) ∩

line(v, PX (v)) = ∅. Then, by convex set separation Theorem
11.3 on page 97 in Rockafellar (1972), there exists a hyperplane
H separating X and line(v, PX (v)) properly. As a result, H must
contain line(v, PX (v)). Let n be the unit normal vector of H with
̸ (n, z − PX (v)) ≥ π/2 for any z ∈ X , and Hv the tangent plane
of bd(X) at PX (v). Then n ∈ Hv since v − PX (v) is a normal vector
of tangent plane Hv . However, it is not possible that there exists
a curve on bd(X) with tangent vector n at PX (v), which yields a
contradiction.

Let z ∈ int(X) ∩ line(v, PX (v)). Then there exists ϵ > 0 such
that B(z, ϵ) ⊆ X . Let y ∈ bd(B(z, ϵ)) be the point for which
̸ (y − z, v − z) = π/2. Clearly, (19) holds for v, θ(v), where
θ(v) = ̸ (y − v, z − v) > 0. Therefore, the claim follows.
We now show the conclusion by contradiction. Suppose that
there is a sequence {vk}k≥0 with vk ∈ S\X and Pa

X (vk) ≠ PX (vk)
such that limk→∞ µ(vk) = 0. Without loss of generality, we
assume limk→∞ vk =: v∗

∈ S\int(X).
We first consider the case of v∗

∈ S\X . In the case of Pa
X (v

∗) ≠

PX (v∗), by the continuity we have 0 = limk→∞ µ(vk) = µ(v∗) >
0, which yields a contradiction. In the case of Pa

X (v
∗) = PX (v∗),

we have limk→∞ θ(vk) = 0, which implies limk→∞
̸ (vk −

PX (vk), Pa
X (vk)− PX (vk)) = π along with limk→∞ µ(vk) = 0. This,

however, is impossible since the surface bd(X) is regular.
We next consider the case of v∗

∈ bd(X). Let r > 0 be
a sufficiently small number such that (19) holds for θ∗ and any
v + rn(v) with |v − v∗

| ≤ r and v ∈ bd(X), where n(v) is
the unit normal vector of the tangent plane of bd(X) at v. Denote
z := v+rn(v). Take arbitrarily a point ŷ := ŷ(z) ∈ bd(CX (z, θ∗))∩
b(z, X) ∩ aff{v, z, Pa

X (z)} such that ̸ (v − z, ŷ − z) = θ∗. Then
µ(z) ≥ ̸ (v− ŷ, z− ŷ). Moreover, it is not hard to find that, for any
z1, z2 such that z1 ∉ X , z2 ∉ X , PX (z1) = PX (z2), |z2|X > |z1|X , and
with (19) holding for both (z1, θ∗) and (z2, θ∗), we have β(z1) ≥

β(z2), where β(z) = infȳ∈bd(CX (z,θ∗))∩b(z,X) ̸ (PX (z) − ȳ, z − ȳ).
From the proceeding two inequalities we conclude that µ(vk) ≥

infv∈bd(X),|v−v∗|≤r β(v+rn(v)) > 0 for all sufficiently large k, which
yields a contradiction. We complete the proof. �
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