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how to find a Pareto optimal solution or the entire Pareto frontier in a decentralized way. Privacy preser-
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the mediator to compute a weighted average of the noisy estimates received from negotiators and nego-
tiators to follow a subgradient optimization iteration at this weighted average. The proposed algorithm
can generate an approximate Pareto optimal solution for one particular weight vector and an approxi-
mate representation of the Pareto frontier by varying appropriately weight vectors. The approximation
error between the obtained approximate representation and the Pareto frontier can be controlled by the
number of iterations and the step-size. Moreover, it also reveals that the proposed algorithm is privacy
preserving as a result of the random disturbance technique and the weighted average scheme used in
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1. Introduction

Negotiation analysis has drawn much research attention in last
decades due to its wide applications in electronic commerce, ar-
tificial intelligence, economics and operations research. The devel-
opment of powerful methods and decision tools for seeking Pareto
optimal solutions (POSs) in negotiation analysis is interesting since
the negotiators frequently fail to achieve efficient agreements in
practice (Raiffa, 1982; Sebenius, 1992). This may be caused by the
numerous issues to be negotiated over and the limited knowledge
about the other negotiators’ interests.
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Many decentralized methods for computing POSs have been
proposed in the literature (Ehtamo et al., 1999a; Ehtamo, Kettunen,
& Hamalainen, 2001; Ehtamo, Verkama, & Hamalainen, 1999b;
Heiskanen, 1999, 2001; Heiskanen, Ehtamo, & Hamalainen, 2001;
Kitti & Ehtamo, 2007; Sehgal & Pal, 2005). A method is called de-
centralized if its use does not require the parties to know each oth-
ers’ value functions nor does any one outsider take the full knowl-
edge of all the value functions. In decentralized Pareto-optimality
seeking methods, typically an interactive procedure is designed be-
tween the negotiators and a mediator, who works as a neutral co-
ordinator helping the negotiators to seek POSs.

Most of decentralized methods can be classified into two
classes: constraint proposal methods (Ehtamo et al, 1999a;
Ehtamo, Verkama, & Hamalainen, 1996; Heiskanen, 2001; Heiska-
nen et al, 2001; Kitti & Ehtamo, 2007; Teich, Wallenius, Wal-
lenius, & Zionts, 1995; Verkama, Ehtamo, & Hamalainen, 1996)
and improving direction methods (Ehtamo et al., 2001; Ehtamo
et al., 1999b; Teich, Wallenius, Wallenius, & Zionts, 1996). The con-
straint proposal methods are based on the fact that under some
mild convexity (concavity) assumptions on the objective functions,
there exists a joint tangent hyperplane for negotiators’ indifference
curves at a POS. In the execution process, the mediator adjusts
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a hyperplane going through a given reference point following a
numerical iteration scheme until the negotiators’ most preferred
points on the hyperplane (the optimal solutions of some opti-
mization problem) coincide. The final coincident point is a POS.
By varying the reference point, the constraint proposal meth-
ods can generate an approximation for the Pareto frontier. Teich
et al. (1995), Ehtamo et al. (1999a, 1996) and Kitti and Ehtamo
(2007) consider the two-party case, while Verkama et al. (1996),
Heiskanen et al. (2001) and Heiskanen (2001) discuss the more
general multiparty case. In joint improvement methods, a joint im-
proving direction is searched from a tentative agreement and a POS
will be obtained if a joint improving direction can no longer be
found. The authors in Ehtamo et al. (1999b) showed that the im-
proving direction method will converge in a two-party case pro-
vided proper conditions hold, while the method was generalized
to multiple-party multiple-issue case in Ehtamo et al. (2001). The
authors in Teich et al. (1996) proposed serval heuristic methods for
seeking joint improvements and some extensions of the proposed
methods for approximating the Pareto frontier in a two-party re-
source allocation negotiations.

The authors in Heiskanen (1999) proposed a decentralized
method based on weight sum and decomposition technique to
generate all the POSs of the Pareto frontier in multiparty negoti-
ations, where the scalarized objective is decomposed by introduc-
ing a decision variable for each party and then applying the dual
decomposition technique. The decomposition results in a separable
problem which is solved iteratively with each party solving its in-
dividual optimization problem, whereas the mediator updates the
parameters of the optimization problems according to the optimal
solutions received from the parties. When the parties’ optimal so-
lutions converge, the common optimal solution is guaranteed to be
Pareto optimal. Moreover, decentralized methods have also been
proposed to solve other interesting problems, for instance, coop-
erative optimization (Fulga, 2007; Nedic¢ & Ozdaglar, 2009; Nedic,
Ozdaglar, & Parrilo, 2010), online learning (Yan, Sundaram, Vish-
wanathan, & Qi, 2013) and eigenvector computation (Pathak & Raj,
2011).

Privacy preservation is an extremely important issue in nego-
tiations. Negotiators desire to achieve an efficient agreement, but
they are usually unwilling to disclose their private information to
other negotiators because of some strategic reasons (Raiffa, 1982).
However, most of the existing decentralized methods did not fully
consider the privacy preservation problem. For instance, in con-
straint proposal methods and improving direction methods, the ne-
gotiators are required to report the optimal solutions of their own
optimization problems to the mediator, or to answer the question
which one of two available agreements they prefer to. These meth-
ods will lead to privacy disclosure inevitably in the sense that the
mediator can infer some information about negotiators’ objective
functions based on the received information from negotiators.

In this paper, we consider the Pareto frontier approximate rep-
resentation problem in multiparty negotiations. In our problem
setup, we assume the negotiators can only exchange information
with the mediator directly from the viewpoint of privacy preserva-
tion, and all parties including the mediator are semi-honest, that
is, all parties follow the algorithm correctly but keep the record
of all their computations. In this paper, we are interested in the
following two problems: the first one is how to design an easily
executable decentralized method to find an approximate represen-
tation of the Pareto frontier, and the second one is whether ne-
gotiators’ privacy can be effectively protected during the algorithm
execution.

Our proposed algorithm is discrete-time and based on a weight
sum method and the well-known subgradient optimization algo-
rithm. In each round of algorithm iteration, the negotiators first re-
port their noisy estimates to the mediator and then the mediator

takes a weighted average of all the estimates. Finally, the media-
tor reports this weighted value to negotiators and the negotiators
update their estimates at the next step from the weighted average
value along a negative subgradient direction. The proposed algo-
rithm can generate an approximate POS for one particular weight
vector with a geometric convergence rate and a discrete approxi-
mate representation of the Pareto frontier by systematically vary-
ing the weight vectors. The approximate error between the ob-
tained approximation representation and the Pareto frontier can be
characterized in terms of the system parameters such as the num-
ber of iterations and the (constant) step-size.

The proposed method is decentralized since it does not re-
quire any party to take the full knowledge of the multiparty ne-
gotiation problem. In fact, it only requires that each negotiator
makes its own optimization iteration and the mediator computes
the weighted average of the negotiators’ estimates. Moreover, it is
also privacy preserving observing that it can prevent the mediator
from learning anything about negotiators’ estimates due to the ran-
dom disturbances in the transmitted estimates from negotiators to
the mediator, and also prevent each negotiator from learning any-
thing from other negotiators even though the received weighted
average contains the information of other negotiators’ estimates
since all the negotiators do not know the weight taken by the me-
diator in the weighted average computation.

Compared with the constraint proposal methods and improv-
ing direction methods, our algorithm is easily executable and can
save a lot of computations. In our algorithm, the negotiators are
not required to report the optimal solutions of their own optimiza-
tion problems and their most preferred points on constraint sets
to the mediator, and only their estimates for POSs are required
to be reported to the mediator. Compared with the methods in
Yan et al. (2013), Nedi¢ and Ozdaglar (2009), Nedic et al. (2010),
Lou, Hong, Xie, Shi, and Johansson (2016) and Lou, Shi, Johansson,
and Hong (2014), negotiators are not allowed to communicate with
each other from the viewpoint of privacy preservation. Moreover,
different from most of the existing algorithms, we fully consider
the privacy preservation problem to avoid privacy disclosure be-
cause of the conflict of negotiators’ interest.

The rest of this paper is organized as follows. The preliminaries
on multiparty negotiation and problem formulation are presented
in Section 2. A fully trusted decentralized POS generating algo-
rithm and a modified privacy-preserving version are introduced in
Section 3. Section 4 presents the proposed decentralized discrete
approximate representation generating algorithm and the approxi-
mate error result. The numerical examples are given in Section 5.
Some concluding remarks are given in Section 6.

2. Preliminaries and problem formulation
2.1. Preliminaries on multiparty negotiations

A multiparty negotiation problem (MNP) is usually described
as

minimize f(x) = (f1 x),.... fa (x))
subject to x e X;, i=1,...,n. (1)

Here n > 2 is the number of negotiating parties; X; € R™ and
fi :R™ — R are the closed convex constraint set and the convex

value function of negotiator i, respectively, i=1,...,n; m is the
number of negotiated issues. We assume throughout this paper
that the constraint sets X;,i=1,...,n are bounded and have a

nonempty intersection. The nonempty feasible set of MNP (1) is
denoted as X = N}, X;.

Let A denote the set of all Pareto optimal solutions (POSs) of
MNP (1), i.e, x* € X if and only if x* € X, and there is no x € X
such that fi(x) < fi(x*) for all i, and with strict inequality for at
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least one i. The set A% is referred to as the Pareto frontier in the
literature.

Let Ay ={w|w = (w1,...,wn)",w; > 0,31, w; = 1} denote the
unit simplex consisting of all nonnegative vectors with the sum of
components equal to one, where ’ denotes the transpose of a vec-
tor. The following lemma is important for the developed method
to compute POSs, which is taken from Theorem 2 in Heiskanen
(1999).

Lemma 2.1. Suppose f;,i=1,...,n are strictly convex. Then x* € X
if and only if there is w € Ay such that x* is the (unique) optimal
solution of optimization problem miny "I ; w; f;.

We know that each optimal solution of miny Y} ; w;f; with
positive vector w € Ap (w; > 0, Vi) is properly Pareto optimal in
the sense of Geoffrion (1968), and hence Pareto optimal. However,
if the value functions are only convex (not necessarily strictly con-
vex), the optimal solutions of miny >"IL; w;f; for @ € A, having
zero as its component are only weakly Pareto optimal in general,
and may be not Pareto optimal (referring to Ehrgott, 2000 for the
definition of weak Pareto optimum).

Now we introduce a lemma about strongly convex functions.
Let | - | denote the Euclidean norm of a vector. A function ¢(-) :
R™ — R is said to be strongly convex on closed convex set K with
parameter A > 0, if forany 0 <« < 1, p(ax+ (1 —@)y) < xp(x) +
1-a)e@y) - %Aa(l —a)|x -yl Vx, y € K or, equivalently,

1
o) zgo(X)+<y—x,g>+§/\IX—y|2, Vx,y K, (2)

where g € dg(x) with d¢(x) denoting the set of all subgradients
of ¢ at x. The following conclusion is important for the coming
lemma and can be obtained from (2) by noticing that 0 € dp(x*):
for strongly convex function ¢(-) : K — R with parameter A > 0,
we have

2 Vzek, (3)

1
0(2) =)+ iklz—z*

where z* is the unique optimal solution of min, . x¢(2).

Define mapping X : A, — Ap with X(w) the unique optimal so-
lution of miny Y ; w; f;. Clearly, mapping X is surjective accord-
ing to Lemma 2.1. The following lemma plays an important role in
characterizing the approximate error between the generated dis-
crete approximate representation and the Pareto frontier. Its proof
is summarized in Appendix A.

Lemma 2.2. Suppose f;,i=1,...,n are strictly convex. Then

(i) Mapping X is continuous on Ap;
(ii) Furthermore, if f; is strongly convex on X; with parameter o; >
0,i=1,....n, then for o* = (w{,....w}) € Ay, £=1,2,

BY L lo! —w?|

Omin

2(@") —%(0?)| <2

s

where B = sup; yex, fi(®), Opmin = MiNy i 0}, L=

SUPscu 0 2}

Note that both B and L are finite numbers due to the bound-
edness of X;,i=1,....n and the continuity of convex functions
fi,i=1,...,n. In the sequel of this paper, we assume that each
value function f; in the considered MNP (1) is strongly convex on
X; with parameter o; > 0,i=1,...,n.

2.2. Problem formulation

We consider the multiparty negotiation problem (1), where n
negotiators are negotiating over m continuous issues. The objective
of the negotiators is to achieve an efficient agreement in POSs or
the Pareto frontier. As the decentralized setting in the literature,

there is a neutral mediator helping negotiators to find the desired
agreement. Each negotiator i only knows its individual constraint
set X;, value function f;, but does not know other constraint sets
X; and value functions f;, j # i. Each negotiator is unwilling to dis-
close her/his private information to other negotiators and the me-
diator due to some strategic reasons. We make the following two
assumptions for the parties in our problem setup.

o In order to prevent the potential privacy disclosure, each negotia-
tor is unwilling to communicate directly with other negotiators.
Each negotiator is only willing to exchange information directly
with the mediator.

All negotiators and the mediator are semi-honest. A semi-honest
agent follows the algorithm properly but it keeps a record of all its
computations (Goldreich, 1998). All parties are assumed to follow
the protocol correctly, but they may record and analyze the data
obtained in the process of following the protocol in order to gain
as much information as possible about other parties.

Unlike the settings in Nedi¢ and Ozdaglar (2009), Nedic et al.
(2010), Lou et al. (2016) and Lou et al. (2014) for decentralized
computation, here the negotiators are unwilling to communicate
with each other to avoid the potential disclosure of private in-
formation. In fact, the first assumption has been widely used in
the decentralized negotiation analysis, see Ehtamo et al. (1999a);
Ehtamo et al. (2001, 1999b), Heiskanen et al. (2001), Teich et al.
(1996), Heiskanen (1999); 2001) and Kitti and Ehtamo (2007). The
second assumption on semi-honesty of parties has also appeared
in the literature, which motivates the research on designing pri-
vacy preserving methods to accomplish various tasks, for instance,
eigenvector computation (Pathak & Raj, 2011), belief propagation
(Kearns, Tan, & Wortman, 2007), POS computation (Sehgal & Pal,
2005).

In this paper, we are concerned with the following problems:

o How to design an easily executable decentralized algorithm to
find an approximate representation of the Pareto frontier? How
to characterize the approximate error between the obtained ap-
proximate representation and the Pareto frontier?

o Is the designed decentralized algorithm privacy preserving in
the sense that any party (including the negotiators and the me-
diator) cannot obtain other parties’ private information based
on the exchanged information in the negotiations?

For the first problem, in Sections 3 and 4 we will first introduce
a discrete-time iterative decentralized algorithm to generate an ap-
proximate POS based on the well-known subgradient optimization
algorithm for one particular weight vector and then an approxi-
mate representation generating algorithm to generate an approxi-
mate representation of the Pareto frontier by systematically vary-
ing the weight vectors in the unit simplex. The result shows that
the approximate error between the obtained approximate repre-
sentation and the Pareto frontier can be characterized by systems
parameters. For the second problem, we give the positive answer
and reveal that the designed algorithm is privacy preserving by
employing a random disturbance technique.

3. An approximate Pareto optimal solution

In this section, we first introduce a fully trusted decentralized
algorithm to generate an approximate POS, and then develop a
modified version taking privacy preservation into account by in-
troducing a random number in the exchanged estimates between
the negotiators and the mediator.

3.1. A fully trusted decentralized algorithm

Raising from large-sized resource allocation in computer net-
works and the estimation in sensor networks, decentralized or
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Algorithm 1 Decentralized Pareto optimal solution generating al-
gorithm.

Input: The nonnegative weight vector w = (w1, ..., wn) € Ay;
number of iterations T; the constant step-size «; initial condi-
tions x”(0) e R™, i=1,...,n.

Output: x*(T).

The mediator delivers the step-size « to all negotiators.
for k=0:T do

1: Each negotiator i transmits its current local estimate
x’ (k) to the mediator;

2: The mediator computes the weighted average x®(k) :=
>y wix{’ (k) of negotiators’ estimates and then reports x* (k) to
all negotiators;

3:ifk<T-1
Each negotiator i updates its current estimate and uses
xP(k+1) =P ()2‘” (k) — ag,-(k)) (4)

as the estimate at the next step, where g;(k) € 0 f;(x®(k)),

Py () : R™ — X; denotes the convex projection

operator onto closed convex set X;.

else Each negotiator i gets X*(T) as the final estimate.
end for

distributed optimization problems have been studied widely in the
literature (Fulga, 2007; Lou et al., 2016; Lou et al., 2014; Nedi¢ &
Ozdaglar, 2009; Nedic et al., 2010). The main advantage of these al-
gorithms compared with the conventional centralized ones is that
they do not require any agent in the network knows other agents’
value functions. Here is the proposed decentralized Pareto optimal
solution generating algorithm (see Algorithm 1).

Here we first distinguish our algorithm with the existing decen-
tralized POS generating algorithms in multiparty negotiations. In
constraint proposal methods (Ehtamo et al., 1999a; Ehtamo et al.,
1996; Heiskanen, 2001; Heiskanen et al., 2001; Kitti & Ehtamo,
2007; Teich et al., 1995; Verkama et al.,, 1996) and the methods
in Heiskanen (1999) and Sehgal and Pal (2005), in each round of
iteration the negotiators are required to exactly solve their own
optimization problems. However, this will incur a lot of compu-
tations and the computation cost may be prohibitively high, espe-
cially for complicated objective functions. Instead of solving whole
optimization problems, our algorithm is discrete-time iterated, rel-
atively simple to execute and only the computations of weighted
average and subgradient optimization are needed.

The discrete-time iterative Algorithm 1 is based on the well-
known subgradient algorithm. In each iteration step, the negotia-
tors first report their estimates to the mediator truthfully and then
the mediator takes a weighted average of the received estimates.
Finally, the mediator transmits this weighted average to all nego-
tiators and negotiators update their estimates following a negative
subgradient direction of their own value functions.

The following theorem establishes the relation between the
generated estimates and the exact POS corresponding to the
weight vector taken in the weighted average step in terms of the
number of iterations T, the step-size @ and some other system pa-
rameters. The proof is given in Appendix B. Recall that X(w) is the
unique optimal solution of miny 31 ; w;f;, w = (w1, ..., wn) € Ap.

Theorem 3.1. Consider decentralized Pareto optimal solution gen-
erating Algorithm 1. Suppose the step-size « satisfies 0 <o <
1/ Z?:l w;0j. Then

al?
YL wioi

(5)

n T
% (1) -x(@)P = (1-a Y wor) [#(0) -F@)+
i=1

Theorem 3.1 shows that the average of agents’ estimates will
converge to the (unique) minimizer of the weighted sum value
function Y1 ; w;f; at a geometric rate until reaching an error

n"‘LZ . Clearly, for any initial condition we can obtain an approx-
i=1 @i

imate POS by executing Algorithm 1 with sufficiently small step-
size « and sufficiently large iteration number T. A surprising fea-
ture of Algorithm 1 is that the weight vector in the weighted sum
value function (or the scalarized single objective) to be minimized
is exactly the one taken in the weighted average step. This feature
lays foundation for generating many POSs or a discrete approxi-
mate representation of the Pareto frontier by systematically vary-
ing the weight vectors in the unit simplex, as that developed in
the next section.
A straightforward application of Theorem 3.1 gives

Corollary 3.1. When

& Z?:] [O1e }
Z?:] wio;’ 212 '
T > In 5

T In(1-a X, wo)

0<a<min{

|x2(T) — X(w)| < &. In fact, the above two conditions suffice to ensure
both the two terms on the right-hand side of (5) not greater than ¢/2,
respectively. Here D = SUPzeu,x; |x©(0) — z|2 is a finite number due to
the boundedness of X;,i=1,...,n.

3.2. A modified privacy preserving decentralized algorithm

Privacy preserving is an extremely important issue in negoti-
ation analysis. Clearly, it is desirable that on one hand, the ne-
gotiators can achieve an efficient agreement, while on the other
hand, their private information can be effectively protected in the
interactions between the negotiators and the mediator. However,
most of the existing decentralized algorithms did not consider the
privacy preservation problem. In the improving direction methods
(Ehtamo et al., 2001; Ehtamo et al., 1999b; Teich et al., 1996), the
negotiators are required to answer the question which one of two
available agreements they prefer to. In constraint proposal meth-
ods (Ehtamo et al., 1999a; Ehtamo et al., 1996; Heiskanen, 2001;
Heiskanen et al.,, 2001; Kitti & Ehtamo, 2007; Teich et al., 1995;
Verkama et al., 1996) and the method in Heiskanen (1999), the ne-
gotiators are required to report the optimal solutions of their own
optimization problems to the mediator. These methods may lead to
privacy disclosure inevitably in the sense that the mediator can in-
fer some information about negotiators’ objective functions based
on the received information from negotiators and some additional
information.

The fully trusted algorithm described in last subsection can
generate an approximate POS with a geometric convergence rate
within any pre-specified approximate error by adjusting the algo-
rithm parameters. However, it is not somehow privacy preserving
from the view that the mediator can infer some information about
negotiators’ value functions f;,i=1,...,n based on the estimates
received from negotiators. In fact, from (4) we can find that in
the special case when there is no constraint, i.e.,, X; = R™, and the
objective functions are differentiable, the mediator can obtain the
gradients of negotiators’ value functions at all the weighted aver-
age points and maybe further infer some information about nego-
tiators’ value functions based on some additional information. In
fact, a strategically equivalent objective function in the neighbor-
hood of weighted average points can be constructed based on the
obtained gradients (Sehgal & Pal, 2005). We next present a modi-
fication to Algorithm 1 so that the negotiators’ private information
cannot be disclosed.
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We keep Algorithm 1 unchanged except the following parts:

for k=0:T do
All negotiators reach an agreement about some random vector
Iy € R™

1’: Each negotiator i transmits its noisy estimate x{’ (k) +ry to
the mediator;

2’: The mediator computes the weighted average x®(k) =
YLy wi(x? (k) + 1)) of negotiators’ noisy estimates and then re-
ports x¥ (k) to all negotiators;

3tifk<T-1

Each negotiator i updates its estimate and uses x{’(k+ 1) =
Py, ()2“’(1() - Ty —ozgi(k)) as the estimate at the next step, where
gi(k) € 3fi(®* (k) —1);
else Each negotiator i gets X“(T) — rr as the final estimate.
end for

We now illustrate that the above modified algorithm is pri-
vacy preserving. Clearly, since the mediator does not know the ran-
dom vector ry, from the noisy estimate x{(k) + ry it is almost im-
possible to obtain x{’(k) and then cannot get further information
about negotiators’ constraint sets and value functions. Notice that
the above modification does not change the actual estimate up-
date. Therefore, the algorithm remains as valid as the fully trusted
one and the negotiators can prevent the disclosure of their pri-
vate information. Moreover, it may be observed that negotiators
might derive some information about other negotiators from the
weighted average vector Y i wix? (k) (or Y1 ; ;(x® (k) +1;) —
=1, w;x? (k) in the modified version). However, this is also
impossible since the negotiators do not know the weights taken
by the mediator in the weighted average vector.

4. Approximate representation of Pareto frontier

In some practical situations, the negotiators may not be satis-
fied with some particular POS but want to find serval ones and
then negotiate over them (Ehtamo et al., 1999a). In this section, we
provide a systemic method to generate serval approximate POSs,
which forms a discrete approximate representation (DAR) of the
Pareto frontier. The proposed method is to first make a discretiza-
tion of the whole nonnegative stochastic vector set, and then gen-
erate approximate POSs corresponding to the weight vectors in the
discretization subset by applying the modified privacy preserving
version of Algorithm 1. The strong convexity of value functions
ensures that the obtained DAR is well dispersed over the Pareto
frontier.

4.1. Relations with multiobjective optimization

Multiparty negotiations is closely related with the multiobjec-
tive optimization. Multiobjective optimization problems have also
been widely investigated in last decades (Hwang & Masud, 1979;
Karasakal & Koksalan, 2009; Klamroth & Miettinen, 2008; Masin
& Bukchin, 2008; Sayin, 2003; Steuer, 1986). In negotiation anal-
ysis, multiple negotiators negotiate over many issues, where each
negotiator has its individual value function, which is not known
by other negotiators. In contrast to negotiation analysis, in multi-
objective optimization problems there is usually one authority, for
example, the manager in a large factory, who has multiple objec-
tives to be optimized simultaneously and has the ability to take
the full knowledge of all the objectives.

Similar to negotiation analysis, an important problem in multi-
objective optimization is to find a discrete approximate represen-
tation of the Pareto frontier in the decision space or the nondom-
inated set in the outcome space. Various methods have been pro-

posed to generate an approximate representation (Karasakal & Kok-
salan, 2009; Klamroth & Miettinen, 2008; Masin & Bukchin, 2008;
Sayin, 2003). In these methods, since the authority takes the full
knowledge of the considered problem, the global information can
be utilized, for instance, the whole nondominated set or the rough
shape of the nondominated set to generate the desired representa-
tion, which is totally different from the decentralized methods in
negotiation analysis.

4.2. Discretization of unit simplex Ap

In this subsection, we present a discretization subset of the unit
simplex A, with pre-specified discretization error €. In fact, we
can easily construct one as follows. Let €* = l/f@'l, where [b]
denotes the least integer not less than b. Clearly, €* < %e. It is
not hard to find that

n
. . 1
Q= {a)|a)l = K;€*, k; is a nonnegative integer, E Ki = ;}
i=1

is a discrete representation of A, with discretization error /ne*
(< €). That is,

sup inf [y —z| <e.

yeln ZEQE

The following lemma gives the cardinality of €2¢. The proof is given
in Appendix C.

Lemma 4.1. Let |Q2¢| denote the cardinality of Q. Then |Q¢| <
Jn
n[T].

Let v = |Q¢|. We sort the elements of Q¢ in lexicographic or-
der (also referring to Chapter 5 of Ehrgott, 2000 for lexicographic
multiobjective optimization):

(Qe={0',..., 0"}, <iex ). (6)

Suppose w/ = (kJe*, ..., kJe*). Then wil < wi2 if and only if
Ky' < K2, where p =min{i|x]! # «;2}. We can find that any two
elements in ¢ sorted in lexicographic order is contiguous if and
only if the two elements have only two different components and
the two different components are contiguous. It is easy to see that
> Iw{—wf“l =2e*forl<j<v-—1.

4.3. An approximate representation generating algorithm

In this subsection, we first introduce an Approximate Represen-
tation Generating Algorithm based on the modified privacy pre-
serving algorithm given in Section 4.2 and the discretization tech-
nique developed in last subsection, and then present the approxi-
mate error between the obtained DAR and the Pareto frontier Af.
As the following theorem shows, the final approximate error is
caused by two factors: the optimization algorithm just executes
finite step iterations and the constructed discretization set Q. is
only a subset of the unit simplex A,. The proposed approximate
representation generating algorithm is as follows (see Algorithm 2).

Here is the approximate error result, and its proof is presented
in Appendix D.

Theorem 4.1. Let € > 0 be any pre-specified discretization error and
Q¢ the discrete representation of A, given in (6). Suppose the step-
size a satisfies 0 < & < N[0 max, Where omax = Maxy i, 0;. Then

. 2Bne AOmin\T  al?
sup1nf|x—z|§\/ +\/C(1—m> + , (7)
XeXg 2e® Omin n Omin
where C = max; ., |>ij (0) — R(w?)|2. In other words, the generated
set ® in Algorithm 2 is a DAR of the Pareto frontier X with the num-

ber on the right-hand side of (7) as an upper bound of approximate
error.
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Algorithm 2 Approximate representation generating algorithm
(ARGA).

Input: The discretization Q¢ = {w!,..., "} with lexicographic
order (6); number of iterations T and the step-size «; initial con-
ditions x;(0) e R™, i=1,..., n;

Initialization: ® = ¢;

Output: The discrete approximate representation (DAR) ®

for j=1:v do

1: Execute the modified privacy preserving algorithm in
Section 3.2 with inputs: weight vector w/, number of itera-
tions T,step-size o and initial conditions x?’l (0) =x;(0) for j=
1%’ (0) = x2'(T) for j = 2.

2: Obtain an approximate POS X%’ (T) and let ® := ® UX®’(T).
end for

Theorem 4.1 gives the approximate error between the generated
DAR and the Pareto frontier Xr. Note that the approximate error
in (7) depends only on the constraint sets X;s, the value functions
fis, the number of negotiators n, the number of iterations T and
the step-size «, but not the weight vectors in 2¢. This provides
the possibility of the existence of the uniform iteration steps to
achieve the desired approximate error specified in advance. In the
following, we will present some discussions on the choice prob-
lem of the number of iterations and discretization error to reach
the pre-specified approximate error and the improving computa-
tion efficiency problem, respectively.

4.3.1. Achieve pre-specified approximate error &

Clearly, we can find a discrete representation 2. of A, with
sufficiently small discretization error € and execute the modified
Algorithm 1 with sufficiently small step-size « and sufficiently
large iteration steps T to generate a DAR of Ap with any pre-
specified approximate error. The following corollary is straightfor-
ward from Theorem 4.1.

Corollary 4.1. When

2
E°Oni
O<E§ﬂ

, O<a<min[$,82€;’;i"},
T 1“(%)‘,
In (1 - —“‘;m'")

SUPye, infzcp X — 2| < &. In fact, under the above sufficient condi-
tions, both the two terms of approximate error in (7) are not greater
than ¢/[2, respectively, and hence the generated set ® in Algorithm
2 is a DAR of X¢ with approximate error €.

4.3.2. Improve computation efficiency

In ARGA, the initial conditions for executing j-th (j > 2) round
Algorithm 1 are set to be negotiators’ estimates x?’H (T) obtained
in (j — 1)-th round. The motivation of this choice of initial condi-
tions comes from that it is expected that the information gained
in previous rounds can be used to generate other approximate
POSs in the coming rounds and then improve the computation ef-
ficiency. ‘

We next give an estimate for C = max;_j, |2’ (0) — R(w))|2.
Notice that ' (0) = %(0), ¥’ (0) =% '(T) for 2 < j < v. Fix j
> 2. Then

%' (0) — R(w’)| = |8 (T) - R(w?)]|
< [%7(T) = R(@" )| + [R(@") - R(w?)]|
<R (1) — (@) 4 | 2Y2BE (8)

Omin

where in the second inequality we use the estimate inequality in
Lemma 2.2 (ii) and the fact that Y1 ; |/ — ! ™!| = 2e* < V2e.

Notice that the number of iterations T in Algorithm 1 is re-
quired to be uniform for different weight vectors. However, this
may be not necessary in practical situations. In fact, from the esti-
mate (8) it is easy to see that when the discretization error is small
enough and the iteration number T in the (j — 1)-th round is large
enough, the term |¥*' (0) — &(w/)| can be sufficiently small. There-
fore, when Algorithm 1 is executed for weight vectors o/, j > 2,
the needed number of iterations T may be not necessarily as large
as that for w! (the scalar |x(0) — R(w!)| may be large).

4.4. General convex functions

We have shown that a DAR of the Pareto frontier can be gener-
ated by the proposed method for strongly convex value functions.
Here we discuss the feasibility of applying the proposed method
to the more general convex value function case. In fact, the follow-
ing example shows that when the value functions are only convex
(not strongly convex), generally it is almost impossible to generate
a DAR of &g by the proposed method.

Example 41.In R?2, let X=X; =X, = {(X1,%)/ |0 <x1.% <
10,v/2x1 + X, = 2}. The value functions fj:R*>—R are
fi(x1,x2) =%;,i=1,2. We can find that the Pareto frontier of the
biobjective optimization problem is Xz = {(z,2 —v2z)/|0 <z < 1}.
Then the weight sum method is used to solve the following
scalarized problem P(y) (0 <y < 1):

minimize y fi(x1,%2) + (1 —y) fa(x1,%2)
subject to (x1,x2) € X.
By some simple calculations, we can find that when y < [0, V2 ),

V241
the unique optimal solution of P(y) is (+2,0); when y e

, 1], the unique optimal solution of P(y) is (0, 2), and when

(=2
V2+1
y = ﬁLi] the optimal solution set of P(y) is {(z,2 — v22)'|0 < z <

+/2}. We can see that the proposed method in this paper is impos-
sible to generate a DAR of Ar for any sufficiently large iteration
steps T and any sufficiently small discretization error €.

5. Examples

In this section, we first present two practical examples to
demonstrate that the proposed method is applicable in these sit-
uations and then an example to numerically compute the approx-
imate error between the approximate representation obtained by
the proposed method and the Pareto frontier.

Example 5.1.

(1) (Resource allocation negotiations Teich et al., 1996) We
consider a two-party resource allocation negotiation prob-
lem, in which there is a single resource that must be al-
located among multiple completing programs p=1,...,m.
Each party i prefers more resource to less and wants to max-
imize its own value function g;(xy,...,Xn), where x, > 0
is the amount allocated to program p. There is a shared re-
source constraint Yj’; xp = ¢ with ¢ > 0 the total available
funding. Moreover, each xp also has an upper bound, de-
noted as ¢, indicating that program p is fully funded at this
level. Without loss of generality, Z';]:l Cp > ¢ is assumed.
This implies that the total funding c is insufficient to fund
all programs fully.

The approximate POS computation problem of the
above two-party resource allocation negotiations can be
solved by the method proposed in this paper by setting
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Fig. 1. The feasible set ([0, 1] x [0, 1]) and the Pareto frontier (the black dotted
line).

Table 1
The weight vector @ and the needed number of iterations T.

wq 0 0.1 02 03 04 05 06 07 08 09 1

T 32 33 33 35 37 40 43 43 60 143 335

X1 =Xy ={x|x=(x1,...,%n)/,0 < Xp < Cp, Z';:l Xp = c},
fi=—g,i=1,2.

(2) (Cournot games Ehtamo et al., 1996; Verkama et al., 1996).
The Cournot game describes an oligopoly market in which
two firms produce a homogeneous product. The two firms’
decision variables are given by their product outputs, which
are denoted as x; € [0, ¢;], i =1, 2, respectively, where ¢; >
0 denotes the capacity constraint of firm i. The market price
q(-) is given by the industry inverse demand curve and the
cost function of firm i is denoted by g;(-). Then the profit
function mr; are given by

(%) = q(X1 + X)X — G (x;), i =1,2,x = (X1, X2).

The approximate POS computation problem of the above
Cournot games can be solved by the method proposed in
this paper by setting X; =[0,c{] x [0, c], X, =[0, c] x [0, c3],

fi=—mi,i=1,2. Here ¢ > max{cy, ¢} is an upper bound of
the two firms’ capacity constraints and is known by the two
firms.

Example 5.2. We consider the following bilateral negotiation prob-
lem:

fi(x1, %) = L

5
2
f(x1x) = £ (24 + (6 + 1) + (4 = 2)x),

(201 = 1)* +x5 = 2% (% = 1)),

where the decision sets are X; = {(X1. %)/ | =1 <x; <1,-1<x; <
1}, X5 = {(x1,%)/|0 <x; <2,0 <x, <2}. Then the feasible con-
straint set X =X; NXy = {(x1,%)|0<x; <1,0<x, <1} and fi, f5
are strongly convex with parameters o = %5 and o, = %ﬁ,
respectively. It is easy to see that o, = 01, Omax = 02 and an up-
per bound of subgradients of f, f, on X is given by L = %

Fig. 1 shows the feasible set and the Pareto frontier of the bi-
lateral negotiation problem.

Table 1 shows the numbers of iterations T required by
Algorithm 1 with initial condition x;(0) =x,(0) = (5, -5)" and

Table 2
The discre. error € and the discre. appro. error Eg.
€ 1/10 1/20 1/50 1/100 1/200 1/500 1/1000
Eq 0.2978 0.1935 0.0942 0.0507 0.0264 0.0108 0.0054
Table 3
The discre. error € and the numer. appro. error Ey.
€ 1/10 1/20 1/50 1/100 1/200 1/500 1/1000
E;  0.0336 0.0219 0.0108 0.0064 0.0064 0.0064 0.0064
Table 4

Weight vectors, corresponding approximate POSs generated by Algorithm 2, POSs
and the Euclidean metric between generated approximate POSs and POSs.

Weights Generated POSs Euclidean metric
vectors approximate POSs

(o, 1y (1.7085e-15, 0) (0, oy 1.7085e—15
(0.1, 0.9y  (0.0263, 1.1633e-04)  (0.0263, 0) 1.1888e—04
(0.2, (0.0556, 5.4915e-04)  (0.0555, 0) 5.5672e—04
0.8)

(0.3, (0.0881, 0.0015) (0.0882, 0y 0.0015

0.7)

(04, (0.1248, 0.0032Y (0.1250, 0y 0.0032

0.6)

(0.5, (0.1667, 0.0064) (0.1667, 0) 0.0064
0.5)

(0.6, (0.2165, 0.0309) (0.2165, 0.0309) 1.1435e—-08
0.4y

(0.7, (0.2826, 0.0870) (0.2826, 0.0870) 1.0486e—07
0.3)

(0.8, (0.3810, 0.1905) (0.3810, 0.1905Y 1.4561e—06
0.2)

(0.9, (0.5562, 0.4045) (0.5562, 0.4045Y 3.1200e—-05
0.1y

(1, 0y (0.9993, 0.9989) (1, 1y 0.0013

E4 Ef A upper bound of the approximate error E
0.0108 0.0064 0.0172

step-size o =0.1 for weight vectors w= (w1.1-w;), w; =
0,0.1,...,0.9,1 to guarantee that the approximate error be-
tween the obtained estimate in Algorithm 1 and the exact POS
arg miny (w1 f1 + (1 — wq) f,) is not greater than 0.01. That is, T is
the smallest positive integer such that |x*(T) — X(w)| < 0.01.

Example 5.3. We still consider the bilateral negotiation prob-
lem in Example 5.2. Table 2 shows the discretization approx-
imate error (defined as supyy, infycg, [x—v|=:E; with Ec =
{argminy "I ; w;fi, @ € Q} denoting the exact POSs correspond-
ing to the weight vectors in 2¢) for different discretization error €.
Clearly, the discretization approximate error decreases as the dis-
cretization error € decreases.

Table 3 shows the numerical approximate error (defined as
SUPcq, [X¥(T) —argminy Y I ; w;fi| = Ef) for different discretiza-
tion error €, where the DAR ® is generated by ARGA with
the number of iterations T =200, step-size o =0.1 and initial
condition x;(0) = x,(0) = (5, =5)". Clearly, the approximate error
SUPye, iNfzcp X — 2| =: E is bounded by Ey +Ey, ie., E < Ef +Ey.

Table 4 shows 11 weight vectors selected from €2q500, the gen-
erated approximate POSs by ARGA, the exact POSs corresponding
to the 11 weight vectors and the Euclidean metric between each
pair points. Here € =1/500, T =200, o =0.1, x1(0) =x,(0) =
(5,-5)".
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6. Conclusion

In this paper we proposed a decentralized method for finding
an approximate representation of the Pareto frontier in multiparty
negotiations with privacy preserving concern. In our setup, all ne-
gotiators are unwilling to communicate with each other directly
and only exchange their noisy estimates with the mediator. All par-
ties are semi-honest in the sense that they follow the designed
protocol correctly, but they may record and analyze the received
data in the algorithm execution in order to infer other parties’ pri-
vate information.

Our decentralized algorithm is based on the weight sum
method and subgradient optimization algorithm. The proposed
weighted average and local optimization scheme can generate a
POS for some particular weight vector and a discrete approximate
representation by systematically varying the weights. The approxi-
mate error between the generated approximate representation and
the Pareto frontier can be controlled by the algorithm parameters
to achieve any pre-specified accuracy level. It also reveals that the
developed method is privacy preserving.

POS computation problem for resource allocation negotiations
and Cournot games have been widely discussed in the literature.
The developed method in this paper is applicable in these practical
situations by finding a proper third-party to serve as a neutral me-
diator, for example, the resource supplier in resource allocation ne-
gotiations and some product purchaser in Cournot games. In such
a negotiator-mediator scenario, an approximate POS or an approx-
imation representation of the Pareto frontier can be obtained pro-
vided that all parties obey the designed estimate update rule. De-
veloping other more efficient decentralized methods to deal with
other types of value functions, for example, general convex func-
tions awaits further investigation.

Appendix A. Proof of Lemma 2.2

We first show (i). Let {®"}, o € A, be a convergent sequence
with lim;_ ., @" = ®. Since A, is a closed set, @ € Ap. Let X" =
argming YIL; wf fi, e, YL ol fi(x") < YL, ol fi(x), Vx € X. Since
X is bounded, the sequence {x"} has a limit point. Let X be a
limit point of {x"} with lims_, X" = X. Taking the limit for the
previous inequality with the identity r =rs yields i ; @;f;(X) <
Y @;ifi(x), Vx € X. Noting that @ has at least one positive com-
ponent and f;,i=1,...,n are strictly convex, X is the unique op-
timal solution of miny Y"1 ; @;f;, i.e., X =argming >_I' ; @; f;. Then
the continuity of X(-) follows from that X is taken from the limit
point set freely.

We next show (ii). Clearly, |Y [ ;o] fi(x)— Y1 w?fi(x)] <
BY 1, |a)l.1 - a)l.z|, Vx e X, where B = sup; ycx fi(%) is a finite num-
ber due to the boundedness of X and the continuity of convex
functions f;,i=1,..., n.

Let X(w') =argming 31 o] fi =1 x1, R(w?) =
argming Y i @? f; =:x*.  We now show by contradiction

BY ! . |w!—w?
that |x! —x2| <2,/ % Hence suppose |x! —x2| >
min

BYL lof —of ]
Tmin
fii=1,....nthat 3, f f; is also strongly convex with parame-
ter o mip > 0, € =1, 2. Then based on inequality (3),

. First it follows from the strong convexity of

n n
1

2 wff,(X) = E w,‘[fi(xg)-l'iamm|X—X€|2,€=1,2-

i=1 i=1

Therefore,

n n
YWl fix*) +BY o] - w}
i=1 i=1

> 3 0l fi02)

i=1

n
1
= E a)llfl(xl) + io}ninw2 _X1|2
i=1

n n
1
= Y W20 ~BY 0] — 02l + yomale® ~ X'
i=1 i=1
which leads to

n n n

1
> Wi fi(x*) =Y wlfix") = 2B o] —of|+ jamin|x2 —x'?
i1 i1

i=1
n

=S i),
i=1

This contradicts that x* is the minimizer of miny }_i'; @? f;. Thus,
BY I T_w? .
|x! —x2| <2,/ w which completes the proof. [J

Appendix B. Proof of Theorem 3.1

In this proof, when there is no potential confusion, we omit w
in 2(w), x?, ¥, y¢ and write them simply &, x;, X, y;.

Let X =argminy I, w;f;. By the estimate update equation
(4) in Algorithm 1, X € X; and the convex projection inequality
|P¢. (v) —z| < |y — 2| for any y € R™ and z € X;, we have

X+ 1) = &2 < |%(k) — agi(k) — 2
= |%(k) — &> + o?|gi (k) |> — 2 (X(k) — X, g; (k)
< [X(k) = R* + &®L? = 2a(fi(X(k)) — fi(R)
+ %6,-|)Z(k) — &), 9)

where the second inequality follows from the relation (2). Here L =
SUPzeu; ,y 8£i(x) |z| is a finite number. By the convexity of function |
1

1LXE.

- |2, we have

n
[X(k+1) —&% < Zwi|x,-(k+l)f>2|2

i=1
< (1 p ana)iol) IR (k) — &2
i=1
_2a<zw,-ﬁ(>2(k)) - Zw,-f,-()?)) + o2
i=1 i=1

n
< (1 —aZwioi)bZ(k) _R2 4 o212, (10)
i=1
where the second inequality follows from taking the sum for both
sides of (9) overi=1,...,n.
By recursive computation for inequality (10), we have

n k+1
IR(k+1) — 8|2 < (1 _a Zwiai) 1%(0) — &2
i=1

k

n
+a’?y” (1 —a Za)ioi)r
io1

r=0
n k+1 al?
<(1-« w-d-) |X(0) =R + ————,
( ; . Y 0i0;

where the second inequality follows from that 0 <« Y[ ; wio; < 1
under the hypothesis o < 1/ Y"1 ; w;o;. We complete the proof. O
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Appendix C. Proof of Lemma 4.1

In fact, |Q2¢| is equal to the number of the solutions to the fol-
lowing integer programming problem:

1 . - .
Ki+Ky+-+Kknp= o kiisa nonnegative integer,i =1,

Then it is not hard to see
) = Tan-1\ (GE+n-D [5HE+)
TT\on-1 ) -l (n—l)!

n-1 n-1

:]1:!(“—6*)5 e

j=1

< m_
*\—a
g}
1

<eEnn _pt =n|74—|.

Then the conclusion follows. O
Appendix D. Proof of Theorem 4.1

Take x* € X arbitrarily. By Lemma 2.1, there exists w* € Ay
such that x* = argminy Y [ ; @} f;. Based on the definition of Q,
there exists w € Qe such that Y1, |w; — wf| < Le. Let R(w) =
argminy Y ' ; w; f;. By Lemma 2.2,

BYiLi|wi—wj| _ [2Bne a1
Omin N O'min ’

Moreover, there is X?(T) € ® obtained by Algorithm 2 with weight
vector w. Therefore, from Theorem 3.1 we have

x*(T) = %(w)]

aYy i oo\ o . al?
< \/(1 - T) |x2(0) — R(w)|% + —Z?=1 v (12)

[R(w) —x*[ <2

Combining (11) with (12) together yields
[x“(T) —x*|
< [x(T) = x(w)| + Ii(w) X'

2B 0 al?
O

Zl lwlal
\/ZBné \/
=
Omin

where C=max;j, |x2’(0) — &(w)|2, which is a finite number
due to the boundedness of X;,i=1,...,n. Then by inequality
(13) and the fact that x* is taken from Af arbitrarily, we conclude
that the approximate error supy.y, inf;ce |y — 2| is not greater than
the number given in (13). The proof is completed. O

ommm>7 al? (13)

Omin
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