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a b s t r a c t 

Multiparty negotiations have drawn much research attention in recent years and an important problem is 

how to find a Pareto optimal solution or the entire Pareto frontier in a decentralized way. Privacy preser- 

vation is also important in negotiation analysis. The main aim of this paper is to find an approximate 

representation of the Pareto frontier in a decentralized manner and meanwhile, all parties’ privacy can 

be effectively protected. In this paper, we propose a decentralized discrete-time algorithm based on a 

weight sum method and the well-known subgradient optimization algorithm, where a mediator works 

as a coordinator to help negotiators. The proposed algorithm is easily executable, and it only requires 

the mediator to compute a weighted average of the noisy estimates received from negotiators and nego- 

tiators to follow a subgradient optimization iteration at this weighted average. The proposed algorithm 

can generate an approximate Pareto optimal solution for one particular weight vector and an approxi- 

mate representation of the Pareto frontier by varying appropriately weight vectors. The approximation 

error between the obtained approximate representation and the Pareto frontier can be controlled by the 

number of iterations and the step-size. Moreover, it also reveals that the proposed algorithm is privacy 

preserving as a result of the random disturbance technique and the weighted average scheme used in 

this algorithm. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Negotiation analysis has drawn much research attention in last

decades due to its wide applications in electronic commerce, ar-

tificial intelligence, economics and operations research. The devel-

opment of powerful methods and decision tools for seeking Pareto

optimal solutions (POSs) in negotiation analysis is interesting since

the negotiators frequently fail to achieve efficient agreements in

practice ( Raiffa, 1982; Sebenius, 1992 ). This may be caused by the

numerous issues to be negotiated over and the limited knowledge

about the other negotiators’ interests. 
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the editor of this journal for their very helpful comments and suggestions. This 
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Many decentralized methods for computing POSs have been

roposed in the literature ( Ehtamo et al., 1999a; Ehtamo, Kettunen,

 Hamalainen, 2001; Ehtamo, Verkama, & Hamalainen, 1999b;

eiskanen, 1999, 2001; Heiskanen, Ehtamo, & Hamalainen, 2001;

itti & Ehtamo, 2007; Sehgal & Pal, 2005 ). A method is called de-

entralized if its use does not require the parties to know each oth-

rs’ value functions nor does any one outsider take the full knowl-

dge of all the value functions. In decentralized Pareto-optimality

eeking methods, typically an interactive procedure is designed be-

ween the negotiators and a mediator, who works as a neutral co-

rdinator helping the negotiators to seek POSs. 

Most of decentralized methods can be classified into two

lasses: constraint proposal methods ( Ehtamo et al., 1999a;

htamo, Verkama, & Hamalainen, 1996; Heiskanen, 2001; Heiska-

en et al., 2001; Kitti & Ehtamo, 2007; Teich, Wallenius, Wal-

enius, & Zionts, 1995; Verkama, Ehtamo, & Hamalainen, 1996 )

nd improving direction methods ( Ehtamo et al., 2001; Ehtamo

t al., 1999b; Teich, Wallenius, Wallenius, & Zionts, 1996 ). The con-

traint proposal methods are based on the fact that under some

ild convexity (concavity) assumptions on the objective functions,

here exists a joint tangent hyperplane for negotiators’ indifference

urves at a POS. In the execution process, the mediator adjusts

http://dx.doi.org/10.1016/j.ejor.2016.04.060
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.04.060&domain=pdf
mailto:louyoucheng@amss.ac.cn
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M  

s  
 hyperplane going through a given reference point following a

umerical iteration scheme until the negotiators’ most preferred

oints on the hyperplane (the optimal solutions of some opti-

ization problem) coincide. The final coincident point is a POS.

y varying the reference point, the constraint proposal meth-

ds can generate an approximation for the Pareto frontier. Teich

t al. (1995) , Ehtamo et al. (1999a , 1996) and Kitti and Ehtamo

2007) consider the two-party case, while Verkama et al. (1996) ,

eiskanen et al. (2001) and Heiskanen (2001) discuss the more

eneral multiparty case. In joint improvement methods, a joint im-

roving direction is searched from a tentative agreement and a POS

ill be obtained if a joint improving direction can no longer be

ound. The authors in Ehtamo et al. (1999b) showed that the im-

roving direction method will converge in a two-party case pro-

ided proper conditions hold, while the method was generalized

o multiple-party multiple-issue case in Ehtamo et al. (2001) . The

uthors in Teich et al. (1996) proposed serval heuristic methods for

eeking joint improvements and some extensions of the proposed

ethods for approximating the Pareto frontier in a two-party re-

ource allocation negotiations. 

The authors in Heiskanen (1999) proposed a decentralized

ethod based on weight sum and decomposition technique to

enerate all the POSs of the Pareto frontier in multiparty negoti-

tions, where the scalarized objective is decomposed by introduc-

ng a decision variable for each party and then applying the dual

ecomposition technique. The decomposition results in a separable

roblem which is solved iteratively with each party solving its in-

ividual optimization problem, whereas the mediator updates the

arameters of the optimization problems according to the optimal

olutions received from the parties. When the parties’ optimal so-

utions converge, the common optimal solution is guaranteed to be

areto optimal. Moreover, decentralized methods have also been

roposed to solve other interesting problems, for instance, coop-

rative optimization ( Fulga, 20 07; Nedi ́c & Ozdaglar, 20 09; Nedi ́c,

zdaglar, & Parrilo, 2010 ), online learning ( Yan, Sundaram, Vish-

anathan, & Qi, 2013 ) and eigenvector computation ( Pathak & Raj,

011 ). 

Privacy preservation is an extremely important issue in nego-

iations. Negotiators desire to achieve an efficient agreement, but

hey are usually unwilling to disclose their private information to

ther negotiators because of some strategic reasons ( Raiffa, 1982 ).

owever, most of the existing decentralized methods did not fully

onsider the privacy preservation problem. For instance, in con-

traint proposal methods and improving direction methods, the ne-

otiators are required to report the optimal solutions of their own

ptimization problems to the mediator, or to answer the question

hich one of two available agreements they prefer to. These meth-

ds will lead to privacy disclosure inevitably in the sense that the

ediator can infer some information about negotiators’ objective

unctions based on the received information from negotiators. 

In this paper, we consider the Pareto frontier approximate rep-

esentation problem in multiparty negotiations. In our problem

etup, we assume the negotiators can only exchange information

ith the mediator directly from the viewpoint of privacy preserva-

ion, and all parties including the mediator are semi-honest, that

s, all parties follow the algorithm correctly but keep the record

f all their computations. In this paper, we are interested in the

ollowing two problems: the first one is how to design an easily

xecutable decentralized method to find an approximate represen-

ation of the Pareto frontier, and the second one is whether ne-

otiators’ privacy can be effectively protected during the algorithm

xecution. 

Our proposed algorithm is discrete-time and based on a weight

um method and the well-known subgradient optimization algo-

ithm. In each round of algorithm iteration, the negotiators first re-

ort their noisy estimates to the mediator and then the mediator
akes a weighted average of all the estimates. Finally, the media-

or reports this weighted value to negotiators and the negotiators

pdate their estimates at the next step from the weighted average

alue along a negative subgradient direction. The proposed algo-

ithm can generate an approximate POS for one particular weight

ector with a geometric convergence rate and a discrete approxi-

ate representation of the Pareto frontier by systematically vary-

ng the weight vectors. The approximate error between the ob-

ained approximation representation and the Pareto frontier can be

haracterized in terms of the system parameters such as the num-

er of iterations and the (constant) step-size. 

The proposed method is decentralized since it does not re-

uire any party to take the full knowledge of the multiparty ne-

otiation problem. In fact, it only requires that each negotiator

akes its own optimization iteration and the mediator computes

he weighted average of the negotiators’ estimates. Moreover, it is

lso privacy preserving observing that it can prevent the mediator

rom learning anything about negotiators’ estimates due to the ran-

om disturbances in the transmitted estimates from negotiators to

he mediator, and also prevent each negotiator from learning any-

hing from other negotiators even though the received weighted

verage contains the information of other negotiators’ estimates

ince all the negotiators do not know the weight taken by the me-

iator in the weighted average computation. 

Compared with the constraint proposal methods and improv-

ng direction methods, our algorithm is easily executable and can

ave a lot of computations. In our algorithm, the negotiators are

ot required to report the optimal solutions of their own optimiza-

ion problems and their most preferred points on constraint sets

o the mediator, and only their estimates for POSs are required

o be reported to the mediator. Compared with the methods in

an et al. (2013) , Nedi ́c and Ozdaglar (2009) , Nedi ́c et al. (2010) ,

ou, Hong, Xie, Shi, and Johansson (2016) and Lou, Shi, Johansson,

nd Hong (2014) , negotiators are not allowed to communicate with

ach other from the viewpoint of privacy preservation. Moreover,

ifferent from most of the existing algorithms, we fully consider

he privacy preservation problem to avoid privacy disclosure be-

ause of the conflict of negotiators’ interest. 

The rest of this paper is organized as follows. The preliminaries

n multiparty negotiation and problem formulation are presented

n Section 2 . A fully trusted decentralized POS generating algo-

ithm and a modified privacy-preserving version are introduced in

ection 3 . Section 4 presents the proposed decentralized discrete

pproximate representation generating algorithm and the approxi-

ate error result. The numerical examples are given in Section 5 .

ome concluding remarks are given in Section 6 . 

. Preliminaries and problem formulation 

.1. Preliminaries on multiparty negotiations 

A multiparty negotiation problem (MNP) is usually described

s 

minimize f (x ) = 

(
f 1 (x ) , . . . , f n (x ) 

)
subject to x ∈ X i , i = 1 , . . . , n. (1) 

ere n ≥ 2 is the number of negotiating parties; X i ⊆ R 

m and

f i : R 

m → R are the closed convex constraint set and the convex

alue function of negotiator i , respectively, i = 1 , . . . , n ; m is the

umber of negotiated issues. We assume throughout this paper

hat the constraint sets X i , i = 1 , . . . , n are bounded and have a

onempty intersection. The nonempty feasible set of MNP (1) is

enoted as X = ∩ 

n 
i =1 

X i . 

Let X E denote the set of all Pareto optimal solutions (POSs) of

NP (1) , i.e., x ∗ ∈ X E if and only if x ∗ ∈ X , and there is no x ∈ X

uch that f ( x ) ≤ f ( x ∗) for all i , and with strict inequality for at
i i 
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least one i . The set X E is referred to as the Pareto frontier in the

literature. 

Let �n = { ω| ω = (ω 1 , . . . , ω n ) ′ , ω i ≥ 0 , 
∑ n 

i =1 ω i = 1 } denote the

unit simplex consisting of all nonnegative vectors with the sum of

components equal to one, where ′ denotes the transpose of a vec-

tor. The following lemma is important for the developed method

to compute POSs, which is taken from Theorem 2 in Heiskanen

(1999) . 

Lemma 2.1. Suppose f i , i = 1 , . . . , n are strictly convex. Then x ∗ ∈ X E 

if and only if there is ω ∈ �n such that x ∗ is the (unique) optimal

solution of optimization problem min X 

∑ n 
i =1 ω i f i . 

We know that each optimal solution of min X 

∑ n 
i =1 ω i f i with

positive vector ω ∈ �n ( ω i > 0, ∀ i ) is properly Pareto optimal in

the sense of Geoffrion (1968) , and hence Pareto optimal. However,

if the value functions are only convex (not necessarily strictly con-

vex), the optimal solutions of min X 

∑ n 
i =1 ω i f i for ω ∈ �n having

zero as its component are only weakly Pareto optimal in general,

and may be not Pareto optimal (referring to Ehrgott, 20 0 0 for the

definition of weak Pareto optimum). 

Now we introduce a lemma about strongly convex functions.

Let | · | denote the Euclidean norm of a vector. A function ϕ(·) :
R 

m → R is said to be strongly convex on closed convex set K with

parameter λ > 0, if for any 0 ≤ α ≤ 1, ϕ(αx + (1 − α) y ) ≤ αϕ(x ) +
(1 − α) ϕ(y ) − 1 

2 λα(1 − α) | x − y | 2 , ∀ x , y ∈ K or, equivalently, 

ϕ(y ) ≥ ϕ(x ) + 〈 y − x, g〉 + 

1 

2 

λ| x − y | 2 , ∀ x, y ∈ K, (2)

where g ∈ ∂ϕ( x ) with ∂ϕ( x ) denoting the set of all subgradients

of ϕ at x . The following conclusion is important for the coming

lemma and can be obtained from (2) by noticing that 0 ∈ ∂ϕ( x ∗):

for strongly convex function ϕ(·) : K → R with parameter λ > 0,

we have 

ϕ(z) ≥ ϕ(z ∗) + 

1 

2 

λ| z − z ∗| 2 , ∀ z ∈ K, (3)

where z ∗ is the unique optimal solution of min z ∈ K ϕ( z ). 

Define mapping ˆ x : �n → X E with ˆ x (ω) the unique optimal so-

lution of min X 

∑ n 
i =1 ω i f i . Clearly, mapping ˆ x is surjective accord-

ing to Lemma 2.1 . The following lemma plays an important role in

characterizing the approximate error between the generated dis-

crete approximate representation and the Pareto frontier. Its proof

is summarized in Appendix A . 

Lemma 2.2. Suppose f i , i = 1 , . . . , n are strictly convex. Then 

(i) Mapping ˆ x is continuous on �n ; 

(ii) Furthermore, if f i is strongly convex on X i with parameter σ i >

0, i = 1 , . . . , n, then for ω 

	 = (ω 

	 
1 
, . . . , ω 

	 
n ) 

′ ∈ �n , 	 = 1 , 2 , 

| ̂  x (ω 

1 ) − ˆ x (ω 

2 ) | ≤ 2 

√ 

B 

∑ n 
i =1 | ω 

1 
i 

− ω 

2 
i 
| 

σmin 

, 

where B = sup i,x ∈ X i f i (x ) , σmin = min 1 ≤i ≤n σi , L =
sup z∈∪ i,x ∈ X i ∂ f i (x ) | z| . 

Note that both B and L are finite numbers due to the bound-

edness of X i , i = 1 , . . . , n and the continuity of convex functions

f i , i = 1 , . . . , n . In the sequel of this paper, we assume that each

value function f i in the considered MNP (1) is strongly convex on

X i with parameter σ i > 0, i = 1 , . . . , n . 

2.2. Problem formulation 

We consider the multiparty negotiation problem (1) , where n

negotiators are negotiating over m continuous issues. The objective

of the negotiators is to achieve an efficient agreement in POSs or

the Pareto frontier. As the decentralized setting in the literature,
here is a neutral mediator helping negotiators to find the desired

greement. Each negotiator i only knows its individual constraint

et X i , value function f i , but does not know other constraint sets

 j and value functions f j , j � = i . Each negotiator is unwilling to dis-

lose her/his private information to other negotiators and the me-

iator due to some strategic reasons. We make the following two

ssumptions for the parties in our problem setup. 

• In order to prevent the potential privacy disclosure, each negotia-

tor is unwilling to communicate directly with other negotiators.

Each negotiator is only willing to exchange information directly

with the mediator. 
• All negotiators and the mediator are semi-honest. A semi-honest

agent follows the algorithm properly but it keeps a record of all its

computations ( Goldreich, 1998 ). All parties are assumed to follow

the protocol correctly, but they may record and analyze the data

obtained in the process of following the protocol in order to gain

as much information as possible about other parties. 

Unlike the settings in Nedi ́c and Ozdaglar (2009) , Nedi ́c et al.

2010) , Lou et al. (2016) and Lou et al. (2014) for decentralized

omputation, here the negotiators are unwilling to communicate

ith each other to avoid the potential disclosure of private in-

ormation. In fact, the first assumption has been widely used in

he decentralized negotiation analysis, see Ehtamo et al. (1999a) ;

htamo et al. (2001 , 1999b) , Heiskanen et al. (2001) , Teich et al.

1996) , Heiskanen (1999) ; 2001 ) and Kitti and Ehtamo (2007) . The

econd assumption on semi-honesty of parties has also appeared

n the literature, which motivates the research on designing pri-

acy preserving methods to accomplish various tasks, for instance,

igenvector computation ( Pathak & Raj, 2011 ), belief propagation

 Kearns, Tan, & Wortman, 2007 ), POS computation ( Sehgal & Pal,

005 ). 

In this paper, we are concerned with the following problems: 

• How to design an easily executable decentralized algorithm to

find an approximate representation of the Pareto frontier? How

to characterize the approximate error between the obtained ap-

proximate representation and the Pareto frontier? 
• Is the designed decentralized algorithm privacy preserving in

the sense that any party (including the negotiators and the me-

diator) cannot obtain other parties’ private information based

on the exchanged information in the negotiations? 

For the first problem, in Sections 3 and 4 we will first introduce

 discrete-time iterative decentralized algorithm to generate an ap-

roximate POS based on the well-known subgradient optimization

lgorithm for one particular weight vector and then an approxi-

ate representation generating algorithm to generate an approxi-

ate representation of the Pareto frontier by systematically vary-

ng the weight vectors in the unit simplex. The result shows that

he approximate error between the obtained approximate repre-

entation and the Pareto frontier can be characterized by systems

arameters. For the second problem, we give the positive answer

nd reveal that the designed algorithm is privacy preserving by

mploying a random disturbance technique. 

. An approximate Pareto optimal solution 

In this section, we first introduce a fully trusted decentralized

lgorithm to generate an approximate POS, and then develop a

odified version taking privacy preservation into account by in-

roducing a random number in the exchanged estimates between

he negotiators and the mediator. 

.1. A fully trusted decentralized algorithm 

Raising from large-sized resource allocation in computer net-

orks and the estimation in sensor networks, decentralized or
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Algorithm 1 Decentralized Pareto optimal solution generating al- 

gorithm. 

Input : The nonnegative weight vector ω = (ω 1 , . . . , ω n ) ′ ∈ �n ; 

number of iterations T ; the constant step-size α; initial condi- 

tions x ω 
i 
(0) ∈ R 

m , i = 1 , . . . , n . 

Output : x̄ ω (T ) . 

The mediator delivers the step-size α to all negotiators. 

for k = 0 : T do 

1: Each negotiator i transmits its current local estimate 

x ω 
i 
(k ) to the mediator; 

2: The mediator computes the weighted average x̄ ω (k ) := ∑ n 
i =1 ω i x 

ω 
i 
(k ) of negotiators’ estimates and then reports x̄ ω (k ) to 

all negotiators; 

3: if k ≤ T − 1 

Each negotiator i updates its current estimate and uses 

x ω i (k + 1) = P X i 
(
x̄ ω (k ) − αg i (k ) 

)
(4) 

as the estimate at the next step, where g i (k ) ∈ ∂ f i ( ̄x 
ω (k )) , 

P X i (·) : R 

m → X i denotes the convex projection 

operator onto closed convex set X i . 

else Each negotiator i gets x̄ ω (T ) as the final estimate. 

end for 
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istributed optimization problems have been studied widely in the

iterature ( Fulga, 2007; Lou et al., 2016; Lou et al., 2014; Nedi ́c &

zdaglar, 2009; Nedi ́c et al., 2010 ). The main advantage of these al-

orithms compared with the conventional centralized ones is that

hey do not require any agent in the network knows other agents’

alue functions. Here is the proposed decentralized Pareto optimal

olution generating algorithm (see Algorithm 1 ). 

Here we first distinguish our algorithm with the existing decen-

ralized POS generating algorithms in multiparty negotiations. In

onstraint proposal methods ( Ehtamo et al., 1999a; Ehtamo et al.,

996; Heiskanen, 2001; Heiskanen et al., 2001; Kitti & Ehtamo,

007; Teich et al., 1995; Verkama et al., 1996 ) and the methods

n Heiskanen (1999) and Sehgal and Pal (2005) , in each round of

teration the negotiators are required to exactly solve their own

ptimization problems. However, this will incur a lot of compu-

ations and the computation cost may be prohibitively high, espe-

ially for complicated objective functions. Instead of solving whole

ptimization problems, our algorithm is discrete-time iterated, rel-

tively simple to execute and only the computations of weighted

verage and subgradient optimization are needed. 

The discrete-time iterative Algorithm 1 is based on the well-

nown subgradient algorithm. In each iteration step, the negotia-

ors first report their estimates to the mediator truthfully and then

he mediator takes a weighted average of the received estimates.

inally, the mediator transmits this weighted average to all nego-

iators and negotiators update their estimates following a negative

ubgradient direction of their own value functions. 

The following theorem establishes the relation between the

enerated estimates and the exact POS corresponding to the

eight vector taken in the weighted average step in terms of the

umber of iterations T , the step-size α and some other system pa-

ameters. The proof is given in Appendix B . Recall that ˆ x (ω) is the

nique optimal solution of min X 

∑ n 
i =1 ω i f i , ω = (ω 1 , . . . , ω n ) ′ ∈ �n .

heorem 3.1. Consider decentralized Pareto optimal solution gen-

rating Algorithm 1 . Suppose the step-size α satisfies 0 < α <

 / 
∑ n 

i =1 ω i σi . Then 

 ̄x ω (T ) − ˆ x (ω) | 2 ≤
(

1 −α
n ∑ 

i =1 

ω i σi 

)T 

| ̄x ω (0) − ˆ x (ω) | 2 + 

αL 2 ∑ n 
i =1 ω i σi 

. 

(5) 
c
Theorem 3.1 shows that the average of agents’ estimates will

onverge to the (unique) minimizer of the weighted sum value

unction 

∑ n 
i =1 ω i f i at a geometric rate until reaching an error

αL 2 ∑ n 
i =1 ω i σi 

. Clearly, for any initial condition we can obtain an approx-

mate POS by executing Algorithm 1 with sufficiently small step-

ize α and sufficiently large iteration number T . A surprising fea-

ure of Algorithm 1 is that the weight vector in the weighted sum

alue function (or the scalarized single objective) to be minimized

s exactly the one taken in the weighted average step. This feature

ays foundation for generating many POSs or a discrete approxi-

ate representation of the Pareto frontier by systematically vary-

ng the weight vectors in the unit simplex, as that developed in

he next section. 

A straightforward application of Theorem 3.1 gives 

orollary 3.1. When 

0 < α < min 

{ 

1 ∑ n 
i =1 ω i σi 

, 
ε 

∑ n 
i =1 ω i σi 

2 L 2 

} 

, 

T ≥ ln 

ε 
2 D 

ln 

(
1 − α

∑ n 
i =1 ω i σi 

) , 

 ̄x ω (T ) − ˆ x (ω) | ≤ ε. In fact, the above two conditions suffice to ensure

oth the two terms on the right-hand side of (5) not greater than ε/2,

espectively. Here D = sup z∈∪ i X i | ̄x ω (0) − z| 2 is a finite number due to

he boundedness of X i , i = 1 , . . . , n . 

.2. A modified privacy preserving decentralized algorithm 

Privacy preserving is an extremely important issue in negoti-

tion analysis. Clearly, it is desirable that on one hand, the ne-

otiators can achieve an efficient agreement, while on the other

and, their private information can be effectively protected in the

nteractions between the negotiators and the mediator. However,

ost of the existing decentralized algorithms did not consider the

rivacy preservation problem. In the improving direction methods

 Ehtamo et al., 2001; Ehtamo et al., 1999b; Teich et al., 1996 ), the

egotiators are required to answer the question which one of two

vailable agreements they prefer to. In constraint proposal meth-

ds ( Ehtamo et al., 1999a; Ehtamo et al., 1996; Heiskanen, 2001;

eiskanen et al., 2001; Kitti & Ehtamo, 2007; Teich et al., 1995;

erkama et al., 1996 ) and the method in Heiskanen (1999) , the ne-

otiators are required to report the optimal solutions of their own

ptimization problems to the mediator. These methods may lead to

rivacy disclosure inevitably in the sense that the mediator can in-

er some information about negotiators’ objective functions based

n the received information from negotiators and some additional

nformation. 

The fully trusted algorithm described in last subsection can

enerate an approximate POS with a geometric convergence rate

ithin any pre-specified approximate error by adjusting the algo-

ithm parameters. However, it is not somehow privacy preserving

rom the view that the mediator can infer some information about

egotiators’ value functions f i , i = 1 , . . . , n based on the estimates

eceived from negotiators. In fact, from (4) we can find that in

he special case when there is no constraint, i.e., X i = R 

m , and the

bjective functions are differentiable, the mediator can obtain the

radients of negotiators’ value functions at all the weighted aver-

ge points and maybe further infer some information about nego-

iators’ value functions based on some additional information. In

act, a strategically equivalent objective function in the neighbor-

ood of weighted average points can be constructed based on the

btained gradients ( Sehgal & Pal, 2005 ). We next present a modi-

cation to Algorithm 1 so that the negotiators’ private information

annot be disclosed. 
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We keep Algorithm 1 unchanged except the following parts: 

for k = 0 : T do 

All negotiators reach an agreement about some random vector

r k ∈ R 

m 

1’: Each negotiator i transmits its noisy estimate x ω 
i 
(k ) + r k to

the mediator; 

2’: The mediator computes the weighted average x̄ ω (k ) =∑ n 
i =1 ω i (x ω 

i 
(k ) + r k ) of negotiators’ noisy estimates and then re-

ports x̄ ω (k ) to all negotiators; 

3’: if k ≤ T − 1 

Each negotiator i updates its estimate and uses x ω 
i 
(k + 1) =

P X i 

(
x̄ ω (k ) − r k − αg i (k ) 

)
as the estimate at the next step, where

g i (k ) ∈ ∂ f i ( ̄x 
ω (k ) − r k ) ; 

else Each negotiator i gets x̄ ω (T ) − r T as the final estimate. 

end for 

We now illustrate that the above modified algorithm is pri-

vacy preserving. Clearly, since the mediator does not know the ran-

dom vector r k , from the noisy estimate x ω 
i 
(k ) + r k it is almost im-

possible to obtain x ω 
i 
(k ) and then cannot get further information

about negotiators’ constraint sets and value functions. Notice that

the above modification does not change the actual estimate up-

date. Therefore, the algorithm remains as valid as the fully trusted

one and the negotiators can prevent the disclosure of their pri-

vate information. Moreover, it may be observed that negotiators

might derive some information about other negotiators from the

weighted average vector 
∑ n 

i =1 ω i x 
ω 
i 
(k ) (or 

∑ n 
i =1 ω i (x ω 

i 
(k ) + r k ) −

r k = 

∑ n 
i =1 ω i x 

ω 
i 
(k ) in the modified version). However, this is also

impossible since the negotiators do not know the weights taken

by the mediator in the weighted average vector. 

4. Approximate representation of Pareto frontier 

In some practical situations, the negotiators may not be satis-

fied with some particular POS but want to find serval ones and

then negotiate over them ( Ehtamo et al., 1999a ). In this section, we

provide a systemic method to generate serval approximate POSs,

which forms a discrete approximate representation (DAR) of the

Pareto frontier. The proposed method is to first make a discretiza-

tion of the whole nonnegative stochastic vector set, and then gen-

erate approximate POSs corresponding to the weight vectors in the

discretization subset by applying the modified privacy preserving

version of Algorithm 1 . The strong convexity of value functions

ensures that the obtained DAR is well dispersed over the Pareto

frontier. 

4.1. Relations with multiobjective optimization 

Multiparty negotiations is closely related with the multiobjec-

tive optimization. Multiobjective optimization problems have also

been widely investigated in last decades ( Hwang & Masud, 1979;

Karasakal & Köksalan, 2009; Klamroth & Miettinen, 2008; Masin

& Bukchin, 2008; Sayin, 2003; Steuer, 1986 ). In negotiation anal-

ysis, multiple negotiators negotiate over many issues, where each

negotiator has its individual value function, which is not known

by other negotiators. In contrast to negotiation analysis, in multi-

objective optimization problems there is usually one authority, for

example, the manager in a large factory, who has multiple objec-

tives to be optimized simultaneously and has the ability to take

the full knowledge of all the objectives. 

Similar to negotiation analysis, an important problem in multi-

objective optimization is to find a discrete approximate represen-

tation of the Pareto frontier in the decision space or the nondom-

inated set in the outcome space. Various methods have been pro-
osed to generate an approximate representation ( Karasakal & Kök-

alan, 2009; Klamroth & Miettinen, 2008; Masin & Bukchin, 2008;

ayin, 2003 ). In these methods, since the authority takes the full

nowledge of the considered problem, the global information can

e utilized, for instance, the whole nondominated set or the rough

hape of the nondominated set to generate the desired representa-

ion, which is totally different from the decentralized methods in

egotiation analysis. 

.2. Discretization of unit simplex �n 

In this subsection, we present a discretization subset of the unit

implex �n with pre-specified discretization error ε. In fact, we

an easily construct one as follows. Let ε∗ = 1 / � √ 

n 
ε � , where � b �

enotes the least integer not less than b . Clearly, ε∗ ≤ 1 √ 

n 
ε. It is

ot hard to find that 

ε := 

{ 

ω 

∣∣ω i = κi ε
∗, κi is a nonnegative integer , 

n ∑ 

i =1 

κi = 

1 

ε∗

} 

s a discrete representation of � n with discretization error 
√ 

n ε∗

 ≤ ε). That is, 

sup 

 ∈� n 
inf 

z∈ �ε

| y − z| ≤ ε. 

he following lemma gives the cardinality of �ε . The proof is given

n Appendix C . 

emma 4.1. Let | �ε | denote the cardinality of �ε . Then | �ε | ≤
 

⌈√ 
n 

ε

⌉
. 

Let ν = | �ε | . We sort the elements of �ε in lexicographic or-

er (also referring to Chapter 5 of Ehrgott, 20 0 0 for lexicographic

ultiobjective optimization): 

�ε = { ω 

1 , . . . , ω 

ν} , < lex 

)
. (6)

uppose ω 

j = (κ j 
1 
ε∗, . . . , κ j 

n ε
∗) ′ . Then ω 

j 1 < lex ω 

j 2 if and only if
j 1 
p < κ

j 2 
p , where p = min { i | κ j 1 

i 
� = κ

j 2 
i 

} . We can find that any two

lements in �ε sorted in lexicographic order is contiguous if and

nly if the two elements have only two different components and

he two different components are contiguous. It is easy to see that
 n 
i =1 | ω 

j 
i 
− ω 

j+1 
i 

| = 2 ε∗ for 1 ≤ j ≤ ν − 1 . 

.3. An approximate representation generating algorithm 

In this subsection, we first introduce an Approximate Represen-

ation Generating Algorithm based on the modified privacy pre-

erving algorithm given in Section 4.2 and the discretization tech-

ique developed in last subsection, and then present the approxi-

ate error between the obtained DAR and the Pareto frontier X E .

s the following theorem shows, the final approximate error is

aused by two factors: the optimization algorithm just executes

nite step iterations and the constructed discretization set �ε is

nly a subset of the unit simplex � n . The proposed approximate

epresentation generating algorithm is as follows (see Algorithm 2 ).

Here is the approximate error result, and its proof is presented

n Appendix D . 

heorem 4.1. Let ε > 0 be any pre-specified discretization error and

ε the discrete representation of � n given in (6) . Suppose the step-

ize α satisfies 0 < α < n / σ max , where σmax = max 1 ≤i ≤n σi . Then 

up 

x ∈X E 
inf 
z∈ �

| x − z| ≤
√ 

2 Bnε

σmin 

+ 

√ 

C 

(
1 − ασmin 

n 

)T 

+ 

αL 2 

σmin 

, (7)

here C = max 1 ≤ j≤ν | ̄x ω j (0) − ˆ x (ω 

j ) | 2 . In other words, the generated

et � in Algorithm 2 is a DAR of the Pareto frontier X E with the num-

er on the right-hand side of (7) as an upper bound of approximate

rror. 
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Algorithm 2 Approximate representation generating algorithm 

(ARGA). 

Input : The discretization �ε = { ω 

1 , . . . , ω 

ν} with lexicographic 

order (6); number of iterations T and the step-size α; initial con- 

ditions x i (0) ∈ R 

m , i = 1 , . . . , n ; 

Initialization : � = ∅ ; 
Output : The discrete approximate representation (DAR) �

for j = 1 : ν do 

1: Execute the modified privacy preserving algorithm in 

Section 3.2 with inputs: weight vector ω 

j , number of itera- 

tions T ,step-size α and initial conditions x ω 
1 

i 
(0) = x i (0) for j = 

1 ; x ω 
j 

i 
(0) = x ω 

j−1 

i 
(T ) for j ≥ 2 . 

2: Obtain an approximate POS x̄ ω 
j 
(T ) and let � := � ∪ x̄ ω 

j 
(T ) . 

end for 
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Theorem 4.1 gives the approximate error between the generated

AR and the Pareto frontier X E . Note that the approximate error

n (7) depends only on the constraint sets X i s, the value functions

 i s, the number of negotiators n , the number of iterations T and

he step-size α, but not the weight vectors in �ε . This provides

he possibility of the existence of the uniform iteration steps to

chieve the desired approximate error specified in advance. In the

ollowing, we will present some discussions on the choice prob-

em of the number of iterations and discretization error to reach

he pre-specified approximate error and the improving computa-

ion efficiency problem, respectively. 

.3.1. Achieve pre-specified approximate error ε 
Clearly, we can find a discrete representation �ε of �n with

ufficiently small discretization error ε and execute the modified

lgorithm 1 with sufficiently small step-size α and sufficiently

arge iteration steps T to generate a DAR of X E with any pre-

pecified approximate error. The following corollary is straightfor-

ard from Theorem 4.1 . 

orollary 4.1. When 

0 < ε ≤ ε 2 σmin 

8 cn 

, 0 < α < min 

{ 

n 

σmax 
, 
ε 2 σmin 

8 L 2 

} 

, 

T ≥
ln 

(
ε 2 

8 D 

)
ln 

(
1 − ασmin 

n 

) , 

up x ∈X E inf z∈ � | x − z| ≤ ε. In fact, under the above sufficient condi-

ions, both the two terms of approximate error in (7) are not greater

han ε/2, respectively, and hence the generated set � in Algorithm

 is a DAR of X E with approximate error ε. 

.3.2. Improve computation efficiency 

In ARGA, the initial conditions for executing j -th ( j ≥ 2) round

lgorithm 1 are set to be negotiators’ estimates x ω 
j−1 

i 
(T ) obtained

n ( j − 1) -th round. The motivation of this choice of initial condi-

ions comes from that it is expected that the information gained

n previous rounds can be used to generate other approximate

OSs in the coming rounds and then improve the computation ef-

ciency. 

We next give an estimate for C = max 1 ≤ j≤ν | ̄x ω j (0) − ˆ x (ω 

j ) | 2 .
otice that x̄ ω 

1 
(0) = x̄ (0) , x̄ ω 

j 
(0) = x̄ ω 

j−1 
(T ) for 2 ≤ j ≤ ν . Fix j

2. Then 

 ̄x ω 
j 

(0) − ˆ x (ω 

j ) | = | ̄x ω j−1 

(T ) − ˆ x (ω 

j ) | 
≤ | ̄x ω j−1 

(T ) − ˆ x (ω 

j−1 ) | + | ̂  x (ω 

j−1 ) − ˆ x (ω 

j ) | 

≤ | ̄x ω j−1 

(T ) − ˆ x (ω 

j−1 ) | + 

√ 

4 

√ 

2 Bε

σmin 

, (8) 
here in the second inequality we use the estimate inequality in

emma 2.2 (ii) and the fact that 
∑ n 

i =1 | ω 

j 
i 
− ω 

j−1 
i 

| = 2 ε∗ ≤
√ 

2 ε. 

Notice that the number of iterations T in Algorithm 1 is re-

uired to be uniform for different weight vectors. However, this

ay be not necessary in practical situations. In fact, from the esti-

ate (8) it is easy to see that when the discretization error is small

nough and the iteration number T in the ( j − 1) -th round is large

nough, the term | ̄x ω j (0) − ˆ x (ω 

j ) | can be sufficiently small. There-

ore, when Algorithm 1 is executed for weight vectors ω 

j , j ≥ 2,

he needed number of iterations T may be not necessarily as large

s that for ω 

1 (the scalar | ̄x (0) − ˆ x (ω 

1 ) | may be large). 

.4. General convex functions 

We have shown that a DAR of the Pareto frontier can be gener-

ted by the proposed method for strongly convex value functions.

ere we discuss the feasibility of applying the proposed method

o the more general convex value function case. In fact, the follow-

ng example shows that when the value functions are only convex

not strongly convex), generally it is almost impossible to generate

 DAR of X E by the proposed method. 

xample 4.1. In R 

2 , let X = X 1 = X 2 = { (x 1 , x 2 ) 
′ | 0 ≤ x 1 , x 2 ≤

0 , 
√ 

2 x 1 + x 2 ≥ 2 } . The value functions f i : R 

2 → R are

f i (x 1 , x 2 ) = x i , i = 1 , 2 . We can find that the Pareto frontier of the

iobjective optimization problem is X E = { (z, 2 −
√ 

2 z) ′ | 0 ≤ z ≤ 1 } .
hen the weight sum method is used to solve the following

calarized problem P ( γ ) (0 ≤ γ ≤ 1): 

inimize γ f 1 (x 1 , x 2 ) + (1 − γ ) f 2 (x 1 , x 2 ) 

ubject to (x 1 , x 2 ) ∈ X. 

y some simple calculations, we can find that when γ ∈ [0 , 
√ 

2 √ 

2 +1 
) ,

he unique optimal solution of P ( γ ) is ( 
√ 

2 , 0) ′ ; when γ ∈
( 

√ 

2 √ 

2 +1 
, 1] , the unique optimal solution of P ( γ ) is (0, 2) ′ , and when

= 

√ 

2 √ 

2 +1 
, the optimal solution set of P ( γ ) is { (z, 2 − √ 

2 z) ′ | 0 < z <
 

2 } . We can see that the proposed method in this paper is impos-

ible to generate a DAR of X E for any sufficiently large iteration

teps T and any sufficiently small discretization error ε. 

. Examples 

In this section, we first present two practical examples to

emonstrate that the proposed method is applicable in these sit-

ations and then an example to numerically compute the approx-

mate error between the approximate representation obtained by

he proposed method and the Pareto frontier. 

xample 5.1. 

(1) (Resource allocation negotiations Teich et al., 1996 ) We

consider a two-party resource allocation negotiation prob-

lem, in which there is a single resource that must be al-

located among multiple completing programs p = 1 , . . . , m .

Each party i prefers more resource to less and wants to max-

imize its own value function g i (x 1 , . . . , x m 

) , where x p ≥ 0

is the amount allocated to program p . There is a shared re-

source constraint 
∑ m 

p=1 x p = c with c > 0 the total available

funding. Moreover, each x p also has an upper bound, de-

noted as c p , indicating that program p is fully funded at this

level. Without loss of generality, 
∑ m 

p=1 c p > c is assumed.

This implies that the total funding c is insufficient to fund

all programs fully. 

The approximate POS computation problem of the

above two-party resource allocation negotiations can be

solved by the method proposed in this paper by setting
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Fig. 1. The feasible set ([0, 1] × [0, 1]) and the Pareto frontier (the black dotted 

line). 

Table 1 

The weight vector ω and the needed number of iterations T . 

ω 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

T 32 33 33 35 37 40 43 43 60 143 335 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

The discre. error ε and the discre. appro. error E d . 

ε 1/10 1/20 1/50 1/100 1/200 1/500 1/10 0 0 

E d 0.2978 0.1935 0.0942 0.0507 0.0264 0.0108 0.0054 

Table 3 

The discre. error ε and the numer. appro. error E f . 

ε 1/10 1/20 1/50 1/100 1/200 1/500 1/10 0 0 

E f 0.0336 0.0219 0.0108 0.0064 0.0064 0.0064 0.0064 

Table 4 

Weight vectors, corresponding approximate POSs generated by Algorithm 2 , POSs 

and the Euclidean metric between generated approximate POSs and POSs. 

Weights 

vectors 

Generated 

approximate POSs 

POSs Euclidean metric 

(0, 1) ′ (1.7085e-15, 0) ′ (0, 0) ′ 1.7085e −15 

(0.1, 0.9) ′ (0.0263, 1.1633e-04) ′ (0.0263, 0) ′ 1.1888e −04 

(0.2, 

0.8) ′ 
(0.0556, 5.4915e-04) ′ (0.0555, 0) ′ 5.5672e −04 

(0.3, 

0.7) ′ 
(0.0881, 0.0015) ′ (0.0882, 0) ′ 0.0015 

(0.4, 

0.6) ′ 
(0.1248, 0.0032) ′ (0.1250, 0) ′ 0.0032 

(0.5, 

0.5) ′ 
(0.1667, 0.0064) ′ (0.1667, 0) ′ 0.0064 

(0.6, 

0.4) ′ 
(0.2165, 0.0309) ′ (0.2165, 0.0309) ′ 1.1435e −08 

(0.7, 

0.3) ′ 
(0.2826, 0.0870) ′ (0.2826, 0.0870) ′ 1.0486e −07 

(0.8, 

0.2) ′ 
(0.3810, 0.1905) ′ (0.3810, 0.1905) ′ 1.4561e −06 

(0.9, 

0.1) ′ 
(0.5562, 0.4045) ′ (0.5562, 0.4045) ′ 3.1200e −05 

(1, 0) ′ (0.9993, 0.9989) ′ (1, 1) ′ 0.0013 

E d E f A upper bound of the approximate error E 

0.0108 0.0064 0.0172 
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(5 , −5) . 
X 1 = X 2 = { x | x = (x 1 , . . . , x m 

) ′ , 0 ≤ x p ≤ c p , 
∑ m 

p=1 x p = c} , 
f i = −g i , i = 1 , 2 . 

(2) (Cournot games Ehtamo et al., 1996; Verkama et al., 1996 ).

The Cournot game describes an oligopoly market in which

two firms produce a homogeneous product. The two firms’

decision variables are given by their product outputs, which

are denoted as x i ∈ [0, c i ], i = 1 , 2 , respectively, where c i >

0 denotes the capacity constraint of firm i . The market price

q ( ·) is given by the industry inverse demand curve and the

cost function of firm i is denoted by g i ( ·). Then the profit

function π i are given by 

πi (x ) = q (x 1 + x 2 ) x i − g i (x i ) , i = 1 , 2 , x = (x 1 , x 2 ) . 

The approximate POS computation problem of the above

Cournot games can be solved by the method proposed in

this paper by setting X 1 = [0 , c 1 ] × [0 , c] , X 2 = [0 , c] × [0 , c 2 ] ,

f i = −πi , i = 1 , 2 . Here c > max { c 1 , c 2 } is an upper bound of

the two firms’ capacity constraints and is known by the two

firms. 

Example 5.2. We consider the following bilateral negotiation prob-

lem: 

f 1 (x 1 , x 2 ) = 

1 

5 

(
2(x 1 − 1) 2 + x 2 2 − 2 x 1 (x 2 − 1) 

)
, 

f 2 (x 1 , x 2 ) = 

2 

5 

(
2 x 2 1 + (x 2 + 1) 2 + (x 1 − 2) x 2 

)
, 

where the decision sets are X 1 = { (x 1 , x 2 ) 
′ | − 1 ≤ x 1 ≤ 1 , −1 ≤ x 2 ≤

1 } , X 2 = { (x 1 , x 2 ) 
′ | 0 ≤ x 1 ≤ 2 , 0 ≤ x 2 ≤ 2 } . Then the feasible con-

straint set X = X 1 ∩ X 2 = { (x 1 , x 2 ) 
′ | 0 ≤ x 1 ≤ 1 , 0 ≤ x 2 ≤ 1 } and f 1 , f 2

are strongly convex with parameters σ1 = 

3 −√ 

5 
5 and σ2 = 

6 −2 
√ 

2 
5 ,

respectively. It is easy to see that σmin = σ1 , σmax = σ2 and an up-

per bound of subgradients of f 1 , f 2 on X is given by L = 

12 
5 . 

Fig. 1 shows the feasible set and the Pareto frontier of the bi-

lateral negotiation problem. 

Table 1 shows the numbers of iterations T required by

Algorithm 1 with initial condition x (0) = x (0) = (5 , −5) ′ and
1 2 
tep-size α = 0 . 1 for weight vectors ω = (ω 1 , 1 − ω 1 ) 
′ , ω 1 =

 , 0 . 1 , . . . , 0 . 9 , 1 to guarantee that the approximate error be-

ween the obtained estimate in Algorithm 1 and the exact POS

rg min X (ω 1 f 1 + (1 − ω 1 ) f 2 ) is not greater than 0.01. That is, T is

he smallest positive integer such that | ̄x ω (T ) − ˆ x (ω) | ≤ 0 . 01 . 

xample 5.3. We still consider the bilateral negotiation prob-

em in Example 5.2 . Table 2 shows the discretization approx-

mate error (defined as sup x ∈X E inf v ∈ �ε | x − v | =: E d with �ε =
 arg min X 

∑ n 
i =1 ω i f i , ω ∈ �ε} denoting the exact POSs correspond-

ng to the weight vectors in �ε ) for different discretization error ε.

learly, the discretization approximate error decreases as the dis-

retization error ε decreases. 

Table 3 shows the numerical approximate error (defined as

up ω∈ �ε
| ̄x ω (T ) − arg min X 

∑ n 
i =1 ω i f i | � E f ) for different discretiza-

ion error ε, where the DAR � is generated by ARGA with

he number of iterations T = 200 , step-size α = 0 . 1 and initial

ondition x 1 (0) = x 2 (0) = (5 , −5) ′ . Clearly, the approximate error

up x ∈X E inf z∈ � | x − z| =: E is bounded by E f + E d , i.e., E ≤ E f + E d . 

Table 4 shows 11 weight vectors selected from �1/500 , the gen-

rated approximate POSs by ARGA, the exact POSs corresponding

o the 11 weight vectors and the Euclidean metric between each

air points. Here ε = 1 / 500 , T = 200 , α = 0 . 1 , x 1 (0) = x 2 (0) =
′ 
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. Conclusion 

In this paper we proposed a decentralized method for finding

n approximate representation of the Pareto frontier in multiparty

egotiations with privacy preserving concern. In our setup, all ne-

otiators are unwilling to communicate with each other directly

nd only exchange their noisy estimates with the mediator. All par-

ies are semi-honest in the sense that they follow the designed

rotocol correctly, but they may record and analyze the received

ata in the algorithm execution in order to infer other parties’ pri-

ate information. 

Our decentralized algorithm is based on the weight sum

ethod and subgradient optimization algorithm. The proposed

eighted average and local optimization scheme can generate a

OS for some particular weight vector and a discrete approximate

epresentation by systematically varying the weights. The approxi-

ate error between the generated approximate representation and

he Pareto frontier can be controlled by the algorithm parameters

o achieve any pre-specified accuracy level. It also reveals that the

eveloped method is privacy preserving. 

POS computation problem for resource allocation negotiations

nd Cournot games have been widely discussed in the literature.

he developed method in this paper is applicable in these practical

ituations by finding a proper third-party to serve as a neutral me-

iator, for example, the resource supplier in resource allocation ne-

otiations and some product purchaser in Cournot games. In such

 negotiator-mediator scenario, an approximate POS or an approx-

mation representation of the Pareto frontier can be obtained pro-

ided that all parties obey the designed estimate update rule. De-

eloping other more efficient decentralized methods to deal with

ther types of value functions, for example, general convex func-

ions awaits further investigation. 

ppendix A. Proof of Lemma 2.2 

We first show (i). Let { ω 

r }, ω 

r ∈ �n be a convergent sequence

ith lim r→∞ 

ω 

r = ω̄ . Since � n is a closed set, ω̄ ∈ � n . Let x r =
rg min X 

∑ n 
i =1 ω 

r 
i 

f i , i.e., 
∑ n 

i =1 ω 

r 
i 

f i (x r ) ≤ ∑ n 
i =1 ω 

r 
i 

f i (x ) , ∀ x ∈ X . Since

 is bounded, the sequence { x r } has a limit point. Let x̄ be a

imit point of { x r } with lim s →∞ 

x r s = x̄ . Taking the limit for the

revious inequality with the identity r = r s yields 
∑ n 

i =1 ω̄ i f i ( ̄x ) ≤
 n 
i =1 ω̄ i f i (x ) , ∀ x ∈ X . Noting that ω̄ has at least one positive com-

onent and f i , i = 1 , . . . , n are strictly convex, x̄ is the unique op-

imal solution of min X 

∑ n 
i =1 ω̄ i f i , i.e., x̄ = arg min X 

∑ n 
i =1 ω̄ i f i . Then

he continuity of ˆ x (·) follows from that x̄ is taken from the limit

oint set freely. 

We next show (ii). Clearly, | ∑ n 
i =1 ω 

1 
i 

f i (x ) − ∑ n 
i =1 ω 

2 
i 

f i (x ) | ≤
 

∑ n 
i =1 | ω 

1 
i 

− ω 

2 
i 
| , ∀ x ∈ X , where B = sup i,x ∈ X f i (x ) is a finite num-

er due to the boundedness of X and the continuity of convex

unctions f i , i = 1 , . . . , n . 

Let ˆ x (ω 

1 ) = arg min X 

∑ n 
i =1 ω 

1 
i 

f i =: x 1 , ˆ x (ω 

2 ) =
rg min X 

∑ n 
i =1 ω 

2 
i 

f i =: x 2 . We now show by contradiction

hat | x 1 − x 2 | ≤ 2 

√ 

B 
∑ n 

i =1 | ω 1 i 
−ω 2 

i 
| 

σmin 
. Hence suppose | x 1 − x 2 | >

 

√ 

B 
∑ n 

i =1 | ω 1 i 
−ω 2 

i 
| 

σmin 
. First it follows from the strong convexity of

f i , i = 1 , . . . , n that 
∑ n 

i =1 ω 

	 
i 

f i is also strongly convex with parame-

er σ min > 0, 	 = 1 , 2 . Then based on inequality (3) , 

n 
 

i =1 

ω 

	 
i f i (x ) ≥

n ∑ 

i =1 

ω 

	 
i f i (x 	 ) + 

1 

2 

σmin | x − x 	 | 2 , 	 = 1 , 2 . 

herefore, 

n ∑ 

i =1 

ω 

2 
i f i (x 2 ) + B 

n ∑ 

i =1 

| ω 

1 
i − ω 

2 
i | 
≥
n ∑ 

i =1 

ω 

1 
i f i (x 2 ) 

≥
n ∑ 

i =1 

ω 

1 
i f i (x 1 ) + 

1 

2 

σmin | x 2 − x 1 | 2 

≥
n ∑ 

i =1 

ω 

2 
i f i (x 1 ) − B 

n ∑ 

i =1 

| ω 

1 
i − ω 

2 
i | + 

1 

2 

σmin | x 2 − x 1 | 2 , 

hich leads to 

n 
 

i =1 

ω 

2 
i f i (x 2 ) ≥

n ∑ 

i =1 

ω 

2 
i f i (x 1 ) − 2 B 

n ∑ 

i =1 

| ω 

1 
i − ω 

2 
i | + 

1 

2 

σmin | x 2 − x 1 | 2 

> 

n ∑ 

i =1 

ω 

2 
i f i (x 1 ) . 

his contradicts that x 2 is the minimizer of min X 

∑ n 
i =1 ω 

2 
i 

f i . Thus,

 x 1 − x 2 | ≤ 2 

√ 

B 
∑ n 

i =1 | ω 1 i 
−ω 2 

i 
| 

σmin 
, which completes the proof. �

ppendix B. Proof of Theorem 3.1 

In this proof, when there is no potential confusion, we omit ω 

n ˆ x (ω) , x ω 
i 

, x̄ ω , y ω 
i 

and write them simply ˆ x , x i , x̄ , y i . 

Let ˆ x = arg min X 

∑ n 
i =1 ω i f i . By the estimate update equation

4) in Algorithm 1 , X ⊆ X i and the convex projection inequality

 P X i (y ) − z| ≤ | y − z| for any y ∈ R 

m and z ∈ X i , we have 

 x i (k + 1) − ˆ x | 2 ≤ ∣∣x̄ (k ) − αg i (k ) − ˆ x 
∣∣2 

= | ̄x (k ) − ˆ x | 2 + α2 | g i (k ) | 2 − 2 α〈 ̄x (k ) − ˆ x , g i (k ) 〉 
≤ | ̄x (k ) − ˆ x | 2 + α2 L 2 − 2 α

(
f i ( ̄x (k )) − f i ( ̂  x ) 

+ 

1 

2 

σi | ̄x (k ) − ˆ x | 2 ), (9) 

here the second inequality follows from the relation (2) . Here L =
up z∈∪ i,x ∈ X i ∂ f i (x ) | z| is a finite number. By the convexity of function |

| 2 , we have 

 ̄x (k + 1) − ˆ x | 2 ≤
n ∑ 

i =1 

ω i | x i (k + 1) − ˆ x | 2 

≤
(

1 − α
n ∑ 

i =1 

ω i σi 

)
| ̄x (k ) − ˆ x | 2 

− 2 α
( n ∑ 

i =1 

ω i f i ( ̄x (k )) −
n ∑ 

i =1 

ω i f i ( ̂  x ) 
)

+ α2 L 2 

≤
(

1 − α
n ∑ 

i =1 

ω i σi 

)
| ̄x (k ) − ˆ x | 2 + α2 L 2 , (10) 

here the second inequality follows from taking the sum for both

ides of (9) over i = 1 , . . . , n . 

By recursive computation for inequality (10) , we have 

 ̄x (k + 1) − ˆ x | 2 ≤
(

1 − α
n ∑ 

i =1 

ω i σi 

)k +1 

| ̄x (0) − ˆ x | 2 

+ α2 L 2 
k ∑ 

r=0 

(
1 − α

n ∑ 

i =1 

ω i σi 

)r 

≤
(

1 − α
n ∑ 

i =1 

ω i σi 

)k +1 

| ̄x (0) − ˆ x | 2 + 

αL 2 ∑ n 
i =1 ω i σi 

, 

here the second inequality follows from that 0 < α
∑ n 

i =1 ω i σi < 1

nder the hypothesis α < 1 / 
∑ n 

i =1 ω i σi . We complete the proof. �
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Appendix C. Proof of Lemma 4.1 

In fact, | �ε | is equal to the number of the solutions to the fol-

lowing integer programming problem: 

κ1 + κ2 + · · · + κn = 

1 

ε∗ , κi is a nonnegative integer, i = 1 , . . . , n.

Then it is not hard to see 

| �ε | = 

(
1 
ε∗ + n − 1 

n − 1 

)
= 

( 1 
ε∗ + n − 1)! 

(n − 1)! 1 ε∗ ! 
= 

∏ n −1 
j=1 ( 

1 
ε∗ + j) 

(n − 1)! 

= 

n −1 ∏ 

j=1 

(
1 + 

1 
ε∗

j 

)
≤

n −1 ∏ 

j=1 

e 
1 
ε∗

j = e 
1 
ε∗

∑ n −1 
j=1 

1 
j 

≤ e 
1 
ε∗ ln n = n 

1 
ε∗ = n 

⌈ √ 
n 

ε

⌉
. 

Then the conclusion follows. �

Appendix D. Proof of Theorem 4.1 

Take x ∗ ∈ X E arbitrarily. By Lemma 2.1 , there exists ω 

∗ ∈ �n 

such that x ∗ = arg min X 

∑ n 
i =1 ω 

∗
i 

f i . Based on the definition of �ε ,

there exists ω ∈ �ε such that 
∑ n 

i =1 | ω i − ω 

∗
i 
| ≤ n 

2 ε. Let ˆ x (ω) =
arg min X 

∑ n 
i =1 ω i f i . By Lemma 2.2 , 

| ̂  x (ω) − x ∗| ≤ 2 

√ 

B 

∑ n 
i =1 | ω i − ω 

∗
i 
| 

σmin 

≤
√ 

2 Bnε

σmin 

. (11)

Moreover, there is x̄ ω (T ) ∈ � obtained by Algorithm 2 with weight

vector ω. Therefore, from Theorem 3.1 we have 

| ̄x ω (T ) − ˆ x (ω) | 
≤

√ (
1 − α

∑ n 
i =1 ω i σi 

n 

)T 

| ̄x ω (0) − ˆ x (ω) | 2 + 

αL 2 ∑ n 
i =1 ω i σi 

. (12)

Combining (11) with (12) together yields 

| ̄x ω (T ) − x ∗| 
≤ | ̄x ω (T ) − ˆ x (ω) | + | ̂  x (ω) − x ∗| 

≤
√ 

2 Bnε

σmin 

+ 

√ (
1 − α

∑ n 
i =1 ω i σi 

n 

)T 

| ̄x ω (0) − ˆ x (ω) | 2 + 

αL 2 ∑ n 
i =1 ω i σi 

≤
√ 

2 Bnε

σmin 

+ 

√ 

C 

(
1 − ασmin 

n 

)T 

+ 

αL 2 

σmin 

, (13)

where C = max 1 ≤ j≤ν | ̄x ω j (0) − ˆ x (ω 

j ) | 2 , which is a finite number

due to the boundedness of X i , i = 1 , . . . , n . Then by inequality

(13) and the fact that x ∗ is taken from X E arbitrarily, we conclude

that the approximate error sup y ∈X E inf z∈ � | y − z| is not greater than

the number given in (13) . The proof is completed. �
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