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Privacy Preservation in Distributed Subgradient
Optimization Algorithms

Youcheng Lou, Lean Yu, Member, IEEE, Shouyang Wang, and Peng Yi

Abstract—In this paper, some privacy-preserving features
for distributed subgradient optimization algorithms are con-
sidered. Most of the existing distributed algorithms focus
mainly on the algorithm design and convergence analysis,
but not the protection of agents’ privacy. Privacy is becom-
ing an increasingly important issue in applications involving
sensitive information. In this paper, we first show that the
distributed subgradient synchronous homogeneous-stepsize algo-
rithm is not privacy preserving in the sense that the malicious
agent can asymptotically discover other agents’ subgradients
by transmitting untrue estimates to its neighbors. Then a dis-
tributed subgradient asynchronous heterogeneous-stepsize pro-
jection algorithm is proposed and accordingly its convergence
and optimality is established. In contrast to the synchronous
homogeneous-stepsize algorithm, in the new algorithm agents
make their optimization updates asynchronously with heteroge-
neous stepsizes. The introduced two mechanisms of projection
operation and asynchronous heterogeneous-stepsize optimiza-
tion can guarantee that agents’ privacy can be effectively
protected.

Index Terms—Asynchronous optimization, distributed opti-
mization, heterogeneous-stepsize, privacy preservation.

I. INTRODUCTION

D ISTRIBUTED optimization and learning have attracted
much research attention in recent years due to their wide

applications in engineering, machine learning, and operations
research. An efficient way for solving distributed optimization
problems is to use a distributed setting instead of conven-
tional centralized settings, in which each agent takes partial
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knowledge about the task and all agents exchange data with
their neighbors via an underlying network communication
graph.

A widely studied problem is the sum objective
optimization problem min

∑n
i=1 fi, where fi is agent

i’s objective function and is only known by agent i
(see [1]–[3], [6]–[10], [12], [18]–[20]). Agents can solve
the optimization problem in a cooperative way by their
individual optimization updates and local data sharing among
neighbors. Two distributed subgradient algorithms with a
constant and time-varying stepsize was respectively proposed
in [1] and [2] to solve the sum optimization problem and
convergence analysis was provided under mild conditions.
Following this, several distributed algorithms under various
scenarios were successively proposed, for instance, dual aver-
aging algorithm [7], alternating direction methods [8], [9],
primal-dual and regularized primal-dual methods [25]–[27],
convex intersection algorithms [11], [13]–[15], continuous-
time dynamics [12], [14], [16], [17], [21], [22], nonlinear
agent dynamics with external disturbances [31], unbalanced
network graphs [3], [10], random network graphs [5], [19],
quantization of subgradients [29], communication
delays [23], [24], etc.

In distributed algorithms, in order to accomplish the opti-
mization task agents unavoidably need to share their individual
information with their neighbors. However, this direct informa-
tion exchange mechanism may result in disclosure of agents’
privacy. Recently, privacy is becoming an increasingly impor-
tant issue in applications involving sensitive data, especially in
distributed settings [32], [33]. It is clearly desirable that agents
can cooperatively solve the optimization problem, and at the
same time their privacy can also be effectively preserved.

While most existing work do not address the privacy preser-
vation (see [1], [2], [4], [7]–[10], [20]–[22], [24]–[28]), some
privacy-preserving algorithms have been proposed to solve dis-
tributed optimization problems recently [34]–[39]. Almost all
of the existing privacy-preserving methods for distributed opti-
mization are differential privacy-based [35]–[39]. Differential
privacy-based methods typically employ a randomized pertur-
bation technique including message perturbation [35]–[38] and
objective perturbation [39] to protect agents’ privacy. In dif-
ferential privacy-based message perturbation methods, agents
usually transit their perturbed estimates (added by a random
noise) to their neighbors to guarantee a certain level of pri-
vacy preservation. One main disadvantage of this approach
is that there is usually a tradeoff between the quality of
the converged solution and the guaranteed level of privacy
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preservation. In other words, this approach cannot generate
an exact optimal solution under the requirement of privacy
preservation. Moreover, as shown in [39], the accurate opti-
mality still cannot be guaranteed even though there is no noise,
or equivalently, without the privacy preservation requirement
in the designed algorithms. Instead of message perturbation,
Nozari et al. [39] proposed a functional perturbation method,
in which before executing any distributed algorithm, agents
first perturb their objective functions by employing the differ-
ential privacy method, and then solve the sum of the perturbed
objective functions cooperatively. Although the objective per-
turbation method can guarantee the accurate optimality in
the absence of noise, i.e., the optimality can be recovered
when there is no privacy concern, it still suffers from a trade-
off between the accuracy of the converged solution and the
ensured level of privacy preservation. Usually the level of pri-
vacy preservation should be reduced for improving the quality
of the converged solution.

The suboptimality incurred by differential privacy-based
approaches motivates us to rethink the privacy preservation
problem of the existing distributed subgradient synchronous
homogeneous-stepsize algorithm (DSSHSA) in which agents
exchange estimates with their neighbors directly without
employing any additional privacy-preserving technique and
make their optimization updates simultaneously with the
homogeneous/same stepsize. In other words, in this paper
we will investigate whether the synchronous homogeneous-
stepsize algorithm has intrinsic privacy-preserving properties
and if not, whether we can design a new distributed algo-
rithm that can achieve both objectives of accurate optimality of
converged solutions and privacy preservation. Agents’ privacy
may refer to different objects in different settings, for example,
convex constraint sets [36], agents’ states [38], objective func-
tions [39], or subgradients of objective functions [34]. Similar
to [34], in this paper, we refer to subgradients of agents’
individual objective functions as agents’ privacy that needs
to be protected. When we investigate the privacy-preserving
properties of the DSSHSA, we assume that there is a mali-
cious agent that does not follow the algorithm truthfully
and can transmit any (untrue) data/estimates to its neigh-
bors [30]. This malicious agent will keep a record of all data
shared with its neighbors in order to discover other agents’
subgradients.

The main contribution of this paper can be summarized as
follows.

1) Note that most of the existing work on distributed opti-
mization algorithms focus mainly on algorithm design
and convergence analysis, but not the protection of
agents’ private information. In this paper, we first show
that the existing DSSHSA, in which all agents optimize
their objectives simultaneously with the homogeneous
(same) stepsize, is not privacy preserving for almost
all adjacency matrices in the sense that the mali-
cious agent can asymptotically discover other agents’
subgradients by transmitting untrue estimates to its
neighbors.

2) We propose a new distributed subgradient projec-
tion asynchronous heterogeneous-stepsize algorithm,

in which agents make their optimization updates
asynchronously and the stepsizes are heterogeneous
(different) among the agents. It shows that the intro-
duced two mechanisms of projection operation and
asynchronous heterogeneous-stepsize optimization can
effectively protect agents’ privacy. Moreover, we also
establish the convergence and optimality of the newly
proposed algorithm with an appropriately selected het-
erogeneous stepsize.

3) Compared with differential privacy-based approaches,
our newly proposed algorithm has the following two
advantages: a) our algorithm allows agents to exchange
their estimates directly with their neighbors without
requiring agents to disguise their estimates or perturb
their objective functions. That is, our algorithm is eas-
ily executable and b) our algorithm can (asymptotically)
achieve the accurate optimality.

This paper is closely related to the recent work [34], in
which Yan et al. considered the privacy preservation problem
of their proposed distributed subgradient online learning syn-
chronous optimization algorithm and showed that their algo-
rithm has intrinsic privacy-preserving properties. The authors
also presented necessary and sufficient conditions to ensure
the privacy-preserving properties. Different from this paper,
we consider the static distributed optimization instead of
dynamical (online learning) optimization in order to high-
light the main motivation. In fact, the current results can be
generalized to the dynamical case. In this paper, we relax
the assumption that the malicious agent knows the adjacency
matrix of the network graph used in [34] considering that
in practice, agents are usually hard to obtain this adjacency
matrix, especially in large-scale networks and distributed
settings.

The rest of this paper is organized as follows. In
Section II, we present some preliminaries on the DSSHSA
and the interested privacy preservation problem. In Section III,
we investigate the nonprivacy preserving property of the
DSSHSA. In Section IV, we first present our distributed
subgradient asynchronous heterogeneous-stepsize projection
algorithm. Then we discuss its privacy-preserving properties,
and establish its convergence and optimality. Finally, some
concluding remarks are given in Section V.

Notations: |·| denotes the Euclidean norm of a vector,
z′ denotes the transpose of vector z. I� denotes the iden-
tity matrix in R

�×�, 1 = (1, . . . , 1)′ is the vector of all
ones. Span{p1, . . . , p�} and rank{p1, . . . , p�} denotes the sub-
space generated by vectors p1, . . . , p�, and the rank of vectors
p1, . . . , p�, respectively. For a closed convex set K ⊆ R

�, PK

denotes the projection operator onto K, i.e., for any z ∈ R
�,

PK(z) is the unique element that belongs to K and satisfies
|z − PK(z)| = infy∈K |z − y|.

II. PRELIMINARIES AND PROBLEM

FORMULATION

In this section, we first introduce the DSSHSA and then
state the interested privacy preservation problem of this
algorithm.



2156 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 7, JULY 2018

A. Distributed Subgradient Synchronous
Homogeneous-Stepsize Algorithm

Consider a network consisting of n agents with node set V =
{1, . . . , n}. The communication among agents is described by
a directed graph G = (V, E), where arc ( j, i) ∈ E means
that agent i can receive the estimate sent by agent j. Node
j is said to be node i’s neighbor if ( j, i) ∈ E . It is assumed
that (i, i) ∈ E for all i. Let Ni = { j|( j, i) ∈ E} denote the
set of node i’s neighbors. Associated with graph G, there is
usually a nonnegative adjacency matrix Ā = (aij) ∈ R

n×n to
characterize the weights among agents, where the entries aij

are nonnegative and aij is positive if and only if ( j, i) ∈ E .
Graph G is said to be strongly connected if there exists a path
from i to j for each pair of nodes i, j ∈ V . The objective of this
network is to cooperatively solve the following sum objective
optimization problem:

min
x∈Rm

n∑

i=1

fi(x) (1)

where fi : R
m → R is the convex objective function of agent

i to be minimized. In a distributed setting, each agent only
knows its own objective function.

An algorithm for solving (1) is the following DSSHSA
proposed in [1]:

xi(k + 1) =
∑

j∈Ni

aijxj(k) − αkdi(k), k ≥ 0

di(k) ∈ ∂fi(xi(k)), i = 1, . . . , n (2)

where xi(k) is agent i’s estimate for the optimal solution of (1)
at time k; 0 < αk ≤ α∗ is the stepsize, α∗ > 0; ∂fi(xi(k))
is the subdifferential that contains all subgradients of fi at
xi(k).1 In algorithm (2), before agents generate their estimates
at the next step, they first take a weighted average of the
estimates received from their neighbors, and then make an
optimization update following a negative gradient direction.
Here the phrase “synchronous and homogeneous-stepsize” in
algorithm (2) means that all agents make their optimization
updates simultaneously with the homogeneous or the same
stepsize {αk}k≥0.

Remark 1: Nedić and Ozdaglar [1] proposed algorithm (2)
with a constant stepsize αk ≡ α (and a generalized time-
varying network graph) to solve optimization problem (1),
where the convergence error between agents’ estimates and the
optimal function value is presented in terms of the constant
stepsize and some other algorithm parameters. Nedić et al. [2]
further considered a more general constrained optimiza-
tion problem minx∈K

∑n
i=1 fi(x) and proposed a distributed

subgradient projection algorithm with a time-varying step-
size {αk}k≥0.

We next introduce three basic assumptions on connectivity,
adjacency matrix of the network graph, and the boundedness
of subgradients [1], [2], [6], [10], [34].

Assumption 1: The graph G is strongly connected.
Assumption 2: The adjacency matrix Ā is doubly stochastic,

i.e.,
∑n

j=1 aij = ∑n
j=1 aji = 1 for all i.

1For a convex function g : R
m → R, v(y) is said to be a subgradient of g

at point y ∈ R
m if g(z) ≥ g(y) + (z − y)′v(y), ∀z ∈ R

m.

Assumption 3: The subgradients of fi are bounded, i.e., there
is L > 0 such that supq∈⋃

i ∂fi(x) |q| ≤ L, ∀x ∈ R
m.

Although each agent only utilizes its own objective function,
this simple weighted average information exchange mecha-
nism can ensure that the network achieves an optimal con-
sensus when all agents follow the algorithm truthfully, as
indicated in the following theorem. This optimal consensus
result can be found in [2, Proposition 2].

Theorem 1: Consider DSSHSA (2) with Assumptions 1–3,∑∞
k=0 αk = ∞ and

∑∞
k=0 α2

k < ∞. Then the network achieves
an optimal consensus, i.e., there exists x̂ ∈ arg min

∑n
i=1 fi

such that limk→∞ xi(k) = x̂, i = 1, . . . , n.

B. Problem Formulation

In DSSHSA (2), agents need to share their estimates for
the optimal solution with their neighbors. However, the direct
information exchange mechanism may result in privacy leak-
age. It is desirable that agents can cooperatively accomplish
the optimization task, while at the same time, agents’ pri-
vate information can be effectively protected. However, most
of the existing distributed optimization algorithms includ-
ing DSSHSA (2) focus mainly on the algorithm design and
convergence analysis, not the privacy preservation (referring
to algorithms in [1]–[3], [6], [7], [21], [22], and [24]–[28])
except the differentially private-based methods. Differentially
private-based methods typically employ a random perturbation
technique to prevent privacy disclosure [35]–[39]. A main dis-
advantage of differentially private-based methods is that there
is a tradeoff between the optimality of the converged solution
and the desired level of privacy preservation, especially that the
message perturbation method still cannot guarantee the accu-
rate optimality even in the absence of noise, or equivalently,
no privacy concern [37].

The disadvantages of differential privacy-based approaches
motive us to rethink the privacy-preserving properties of
DSSHSA (2) in which agents exchange estimates with their
neighbors directly and make their optimization updates simul-
taneously with homogeneous stepsizes. In this paper, we define
agents’ subgradients as their privacy that needs to be protected,
similar to the setting in [34]. When we investigate the privacy-
preserving properties of DSSHSA (2), we assume that there is
a malicious agent that does not follow the algorithm correctly
and can transmit any data to its neighbors. We call those agents
that follow the algorithm correctly as regular agents. The mali-
cious agent will keep a record of all the exchanged data with
its neighbors trying to discover its neighbors’ subgradients.

In this paper, we are interested in the following two privacy
preservation problems.

1) Is DSSHSA (2) privacy preserving in the sense that
the malicious agent can discover other agents’ subgradi-
ents based on the received estimates from its neighbors
and the “untrue” estimates transmitted by this malicious
agent to other agents.

2) If DSSHSA (2) is not privacy preserving, can we design
a privacy-preserving distributed subgradient algorithm
in which agents can exchange estimates with their
neighbors directly without employing any additional
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privacy-preserving technique (for instance and differen-
tially private-based method).

We will address the first problem in Section III and the
second one in Section IV.

III. NONPRIVACY PRESERVING PROPERTY OF

SYNCHRONOUS HOMOGENEOUS-STEPSIZE ALGORITHM

In this section, we will investigate the privacy preserving
properties of DSSHSA (2) in which all agents make their opti-
mization updates simultaneously with the homogeneous/same
stepsize.

Clearly, if the malicious agent can obtain the adjacency
matrix of the network graph and observe all other regular
agents’ estimates, this malicious agent can discover other
agents’ subgradients by simple subtraction calculations not-
ing that the stepsizes of all agents are the same. So it is
important to consider the adjacency matrix discovery problem
of DSSHSA (2). Specifically, we will first consider a special
case of DSSHSA (2) with constant objective functions, i.e.,
the distributed consensus algorithms, and then DSSHSA (2).

In the work by Yan et al. [34], it is assumed that the mali-
cious agent knows the adjacency matrix. Different from this,
in this paper, we do not impose this assumption because it
is generally hard to obtain this adjacency matrix in practice,
especially in large-scale directed networks, taking the fol-
lowing two reasons into account: first, the adjacency matrix
captures the global network information and then generally
cannot be easily obtained by agents in a local setting and sec-
ond, agents are not willing to leak the weights assigned to their
neighbors to other agents from the point of view of privacy
preservation.

In this section, we assume without loss of generality that
agent n is the malicious agent, agents 1, 2, . . . , n − 1 (regular
agents) are this malicious agent’s neighbors and the induced
subgraph generated by all regular agents is strongly connected.
We also assume m = 1 for notational simplicity in this section.

A. Adjacency Matrix Discovery of Distributed
Consensus Algorithms

In this subsection, we consider the adjacency matrix dis-
covery of the distributed consensus algorithm

xi(k + 1) =
∑

j∈Ni

aijxj(k), i = 1, . . . , n, k ≥ 0. (3)

Specifically, we will investigate whether the malicious agent
n can discover the adjacency matrix based on the exchanged
estimates with other agents. Note that the malicious agent does
not follow the algorithm truthfully and can transmit any data
to other regular agents.

Let {u(k)}k≥0 be a data sequence that the malicious agent n
transmits to other agents [i.e., xn(k) = u(k), k ≥ 0]. Partition
adjacency matrix Ā into

Ā =
(

A b
∗ ∗

)

A ∈ R
(n−1)×(n−1), b = (

a1n, . . . , a(n−1)n
)′ ∈ R

n−1.

Denote x(k) = (x1(k), . . . , xn−1(k))′. Then we rewrite (3) in a
compact form

x(k + 1) = Ax(k) + bu(k), k ≥ 0. (4)

In the following, we also denote:

b = (b1, . . . , bn−1)
′

for notational simplicity.
Note that bi > 0 for all i since we assume that all regular

agents are the malicious agent’s neighbors. When there is no
confusion, we roughly call the weight pair (A, b) describing
the weights within regular agents and that between regular
agents and the malicious agent as the adjacency matrix of (4).
We now formally introduce the definition of adjacency matrix
discovery. A vector is called a stochastic vector if it is non-
negative and the sum of its components is one, and a matrix is
called a stochastic matrix if all its rows are stochastic vectors.

Definition 1: We say that the adjacency matrix (A, b) of (4)
can not be discovered by the malicious agent if there exists
another stochastic matrix (A∗, b∗) = (A, b) such that

1) each component of b∗ is positive;
2) for any sequence {u(k)}k≥0, x∗(k) = x(k) for k ≥ 0,

where {x∗(k)}k≥0 is the estimate sequence generated by
the algorithm

x∗(k + 1) = A∗x∗(k) + b∗u(k), k ≥ 0

with x(0) = x∗(0) and can be discovered by the
malicious agent otherwise.

Theorem 2: The adjacency matrix (A, b) of algorithm (4)
can not be discovered by the malicious agent if and only if
the following matrix equations with variable z have at least
two solutions:

{
(A − z)Akb = 0, k = 0, 1, . . . , n − 2
(A − z)Akx(0) = 0, k = 0, 1, . . . , n − 2

subject to z ∈ R
(n−1)×(n−1), (z, b) is a stochastic matrix.

Proof (Necessity): According to the definition of adja-
cency matrix discovery, there exists another stochastic matrix
(A∗, b∗) = (A, b) such that for any sequence {u(k)}k≥0, the two
estimate sequences generated by algorithm (4) with respective
(A, b) and (A∗, b∗) are identical. Then

(
A − A∗)x(k) + (

b − b∗)u(k) = 0, k ≥ 0.

As a result, b = b∗, and consequently, (A − A∗)x(k) = 0 for
k ≥ 0. Therefore, (A − A∗)x(0) = 0. From (A − A∗)x(1) = 0
and x(1) = Ax(0)+ bu(0), we can see that (A − A∗)b = 0 and
(A − A∗)Ax(0) = 0. Analogously, from (A − A∗)x(2) = (A −
A∗)(A2x(0)+Abu(0)+bu(1)), we can obtain that (A−A∗)Ab =
0, (A − A∗)A2x(0) = 0. Other equations can be obtained in a
similar way.

(Sufficiency): The sufficiency can be shown directly from
the sufficiency hypothesis and the fact that each Ak, k ≥ n − 1
can be expressed as a linear combination of In−1, A, . . . , An−2.

We complete the proof.
The following two corollaries can be obtained directly from

Theorem 2.
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(1, x(1), . . . , x(n), x(n + 1), . . . , x(2n − 1))

= (A, b)

(
1 x(0) · · · x(n − 1) x(n) · · · x(2n − 2)

1 u(0) · · · u(n − 1) u(n) · · · u(2n − 2)

)

= (A, b)

×
(

1 x(0) · · · An−1x(0) + ∑n−2
r=0 An−2−rbu(r) Anx(0) + ∑n−1

r=0 An−1−rbu(r) · · · A2n−2x(0) + ∑2n−3
r=0 A2n−3−rbu(r)

1 u(0) · · · u(n − 1) u(n) · · · u(2n − 2)

)

(6)
(

1 x(0) Ax(0) · · · An−2x(0) An−1x(0) Anx(0) + b · · · A2n−2x(0) + ∑2n−3
r=n−1 A2n−3−rb

1 0 0 · · · 0 1 1 · · · 1

)

(7)

Corollary 1: If

span
{
1, b, Ab, . . . , An−2b, x(0), Ax(0), . . . , An−2x(0)

}
= R

n−1

(5)

then the adjacency matrix (A, b) of algorithm (4) can be
discovered by the malicious agent.

Corollary 2: If the single-input control system (4) is com-
pletely controllable [equivalently, rank(b, Ab, . . . , An−2b) =
n − 1], then the adjacency matrix (A, b) of algorithm (4) can
be discovered by the malicious agent.

From Corollaries 1 and 2 we can see that for almost all
adjacency matrices except a zero Lebesgue measure weight
set, the adjacency matrix (A, b) of algorithm (4) can be
discovered by the malicious agent. The following theo-
rem presents a necessary and sufficient condition that the
adjacency matrix can be discovered for a special class of
graphs.

Theorem 3: Assume there is a node i, i = n in graph G such
that each node j, j = i, j = n is a neighbor of node i. Then the
adjacency matrix (A, b) of algorithm (4) can be discovered by
the malicious agent if and only if (5) holds.

Proof: The sufficiency comes from Corollary 1. We now
show by contradiction the necessity. We assume without loss
of generality that nodes 2, . . . , n − 1 are node 1’s neighbors.
As a result, all components of the first row of A, which is
denoted as a, are positive. Select a nonzero vector

c ∈ span
{

1, b, Ab, . . . , An−2b, x(0), Ax(0), . . . , An−2x(0)
}⊥

with sufficiently small components such that all components
of a−c are positive (⊥ denotes the orthogonal complement of
a subspace). Note that (a − c, b1) is also a stochastic vector
because (a−c)′1 = a′1 = 1−b1. Therefore, the matrix z with
the first row being a−c and all other rows are the same as that
of A is also a solution of the matrix equations in Theorem 2.
This contradicts Theorem 2 and consequently, the necessity
follows. The proof is completed.

We next present a necessary and sufficient condition on
adjacency matrix recovery when the network contains only
three agents.

Theorem 4: Consider algorithm (4) with a completely con-
nected graph and n = 3. Then the adjacency matrix (A, b) of
algorithm (4) can not be discovered by the malicious agent if
and only if b1 = b2, x1(0) = x2(0) and a11 + a12 = a21 + a22.

Proof: The sufficiency is straightforward. In fact, when the

sufficient conditions hold, any nonnegative matrix

(
z1 z2
z3 z4

)

satisfying z1 + z2 = z3 + z4 = a11 + a12 is a solution of the
matrix equations in Theorem 2.

We now show the necessity by contradiction. Hence suppose
x1(0) = x2(0). Then from (A − z)x(0) = 0 and (z, b) is a
stochastic matrix, we get that a11x1(0)+a12x2(0) = z1x1(0)+
z2x2(0) and a11 + a12 = z1 + z2. That is

(
x1(0) x2(0)

1 1

)(
a11 − z1
a12 − z2

)

= 0.

The above equation implies that z1 = a11, z2 = a12 due
to x1(0) = x2(0). Similarly, we can show that z3 = a21,
z4 = a22. This implies that the matrix equations in Theorem 2
has a unique solution, which raises a contradiction. Therefore,
x1(0) = x2(0). Analogously, from (A − z)Ax(0) = 0 we can
also prove that the two entries of Ax(0) are the same. Then
it follows that a11 + a12 = a21 + a22. From the first matrix
equation in Theorem 2 we can also show that b1 = b2 in a
similar way. The proof is completed.

We now consider how the malicious agent chooses an appro-
priate sequence {u(k)}k≥0 to discover the adjacency matrix
(A, b) when condition (5) holds.

Theorem 5: Assume (5) holds. Then the adjacency matrix
(A, b) of distributed algorithm (4) can be discovered by the
malicious agent by choosing

u(0) = u(1) = · · · = u(n − 2) = 0

u(n − 1) = u(n) = · · · = u(2n − 2) = 1.

Proof: From Corollary 1 we know that the adjacency matrix
(A, b) of algorithm (4) can be discovered by the malicious
agent under the condition (5). By (4) we get (6), as shown at
the top of this page.

Rewrite the matrix (6) as Z = (A, b)Y . Note that the square
matrix YY ′ is invertible if and only if Y is full row rank.
So if matrix Y has full row rank, then (A, b) is uniquely
determined by

(A, b) = ZY ′(YY ′)−1
.

We next show that the matrix Y has full row rank under
condition (5) by choosing u(0), . . . , u(2n − 2) given in this
theorem. By letting u(0) = u(1) = · · · = u(n − 2) = 0 and
u(n − 1) = · · · = u(2n − 2) = 1 in Y yields the matrix in (7),
as shown at the top of this page. Noting that any Ak, k ≥ n−1
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can be expressed as a linear combination of In−1, A, . . . , An−2,
we can find that the matrix in (7) is certainly full row
rank.

B. Adjacency Matrix Discovery of DSSHSA (2)

In last subsection, we study the adjacency matrix discovery
problem of distributed consensus algorithms. In this subsec-
tion, we proceed to consider this problem of DSSHSA (2). We
rewrite algorithm (2) in the following compact form:

x(k + 1) = Ax(k) + bu(k) − ε(k), k ≥ 0 (8)

where ε(k) = (ε1(k), . . . , εn−1(k))′, εi(k) = αkdi(k).
We first present a useful lemma for the following analysis.
Lemma 1: Assume Assumptions 1–3 hold. Then the esti-

mates xi(k), i, k generated by DSSHSA (2) or algorithm (8)
are bounded if the u(k), k ≥ 0 transmitted by the malicious
agent to other agents are bounded.

Proof: By Assumption 3, we have |εi(k)| ≤ αkL ≤ α∗L.
It is also easy to see that ||A||∞ := max1≤i≤n−1

∑n−1
j=1 aij =

max1≤i≤n−1(1 − bi) < 1. From (8) by induction we have

x(k + 1) = Ak+1x(0) +
k∑

r=0

Ak−r(bu(r) − ε(r)), k ≥ 0.

The proceeding three relations imply that for any k

||x(k + 1)||∞ ≤ ||A||k+1∞ ||x(0)||∞ +
k∑

r=0

||A||k−r∞
(
u∗ + α∗L

)

≤ ||x(0)||∞ + u∗ + α∗L

1 − ||A||∞
< ∞

where u∗ := supk≥0 |u(k)| is a finite number by the hypothesis.
Then the proof is completed.

It is time to present our first important result of this paper.
Theorem 6: Consider DSSHSA (2) with Assumptions 1–3,

rank(b, Ab, . . . , An−2b) = n − 1 and limk→∞ αk = 0. Then
the adjacency matrix (A, b) of DSSHSA (2) or algorithm (8)
can be discovered asymptotically by the malicious agent by
choosing an appropriate sequence {u(k)}k≥0.

Proof: Denote sr,k = r(2n−1)+k, r ≥ 0, k = 0, . . . , 2n−2
and let u(sr,0) = u(sr,1) = · · · = u(sr,n−2) = 0, u(sr,n−1) =
u(sr,n) = · · · = u(sr,2n−2) = 1 for each r ≥ 0. Similar to the
analysis in the proof of Theorem 5

(A, b) = ZrY ′
r

(
YrY ′

r

)−1 + (
0, ε

(
sr,1 − 1

)
, . . . , ε

(
sr,2n−1 − 1

))

× Y ′
r

(
YrY ′

r

)−1 (9)

where Zr = (1, x(sr,1), x(sr,2), . . . , x(sr,2n−1)), Yr is defined
similarly as the matrix given in (7) by replacing x(0) with
x(sr,0). Under the hypothesis of rank(b, Ab, . . . , An−2b) = n−
1, YrY ′

r is full row rank and hence the inverse (YrY ′
r)

−1 exists.
By Lemma 1, the estimates xi(k), i, k are bounded. Then

YrY ′
r, r ≥ 0 are bounded and as a result, we can show by

contradiction that (YrY ′
r)

−1, r ≥ 0 are also bounded based on
the following two facts.

1) Let {Br}, {Cr} be two square matrix sequences. If Br =
C−1

r for any r and limr→∞ Br = B, where the inverse
B−1 exists, then limr→∞ Cr = B−1.

2) Under the condition rank(b, Ab, . . . , An−2b) = n−1, the
inverse of YrY ′

r exists for any x(sr,0), here we regard YrY ′
r

as a matrix function with variable x(sr,0) in a bounded
closed set.

The boundedness of (YrY ′
r)

−1, r ≥ 0 combines with the
hypothesis condition limk→∞ αk = 0 imply that the second
term in (9) tends to zero as r → ∞. Then we conclude that
(A, b) can be discovered asymptotically by the malicious agent
in the sense that

lim
r→∞ |ZrY ′

r

(
YrY ′

r

)−1 − (A, b)| = 0.

We complete the proof.
Remark 2: We can see that the stepsize condition

limk→∞ αk = 0 given in Theorem 6 naturally holds under
the condition

∑∞
k=0 α2

k < ∞ in Theorem 1.

C. Nonprivacy Preserving Property of DSSHSA (2)

The result in Theorem 6 implies that the synchronous
homogeneous-stepsize algorithm (2) is not privacy preserving
in the sense that the malicious agent can asymptotically dis-
cover the adjacency matrix and other agents’ subgradients by
choosing an appropriate data sequence transmitted to other
regular agents. In fact, according to the proof of Theorem 6,
limr→∞ Ar = A, limr→∞ br = b, where (Ar, br) is the matrix
pair such that ZrY ′

r(YrY ′
r)

−1 =: (Ar, br). Then we can find that
regular agents’ subgradients at any time k can be obtained by

Arx(k) + bru(k) − x(k + 1)

αk

with sufficiently large r. Under the assumption that the mali-
cious agent knows the adjacency matrix, Yan et al. [34]
showed that the malicious agent can discover other regular
agents’ subgradients if and only if all other regular agents are
the malicious agent’s neighbors. This is consistent with our
result.

IV. DISTRIBUTED SUBGRADIENT ASYNCHRONOUS

HETEROGENEOUS-STEPSIZE PROJECTION ALGORITHM

In last section, we showed that when the malicious agent
does not follow the algorithm correctly and can observe
all other regular agents’ estimates, for almost all adja-
cency matrices except a zero Lebesgue measure weight set,
DSSHSA (2) is not privacy preserving in the sense that reg-
ular agents’ subgradients can be asymptotically discovered
by the malicious agent. In this section, we will propose a
new privacy-preserving distributed subgradient algorithm and
strictly establish its convergence of optimality.

The main design idea of the newly proposed algorithm is
that agents optimize their individual objective functions asyn-
chronously and the stepsizes are heterogeneous. Additionally,
we artificially introduce a projection set in the estimate
iterations.

Note that in Algorithm 1, ci is a constant, κi(r) is the
time when agent i makes its rth optimization update. Here
ci and {κi(r)}r≥1 are referred to as agent i’s privacy preserva-
tion constant and optimization update time sequence, respec-
tively, which are deterministic and only known by agent i.
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Algorithm 1 Distributed Subgradient Asynchronous
Heterogeneous-Stepsize Projection Algorithm

Initialization: privacy preservation constants ci ≥ 0,
optimization update sequence {κi(r)}r≥1, initial conditions
xi(0) ∈ R

m, i = 1, . . . , n, closed convex projection set X,
adjacency matrix Ā = (aij) ∈ R

n×n.

Algorithm:
for i = 1, ..., n, take di(k) ∈ ∂fi(xi(k)) and let

xi(k + 1) = PX

( ∑

j∈Ni

aijxj(k) − 1

ci + r
di(k)

)

if k = κi(r) for some r, and

xi(k + 1) = PX

( ∑

j∈Ni

aijxj(k)
)

otherwise.

Output: agent i’s estimate sequence {xi(k)}k≥0 for the
optimal solution of optimization problem (1), i = 1, . . . , n.

After taking a weighted average of the estimates received from
its neighbors, each agent will take a subgradient optimization
step and a projection onto set X to generate the estimate at
the next step if the current time is this agent’s optimization
update time, and will just take the projection of the weighted
average onto set X as the estimate at the next step otherwise.

Each agent does not know other agents’ optimization update
times and then implies that agents make their optimization
updates asynchronously. When one agent makes its optimiza-
tion update at some time, the stepsize at this time is taken
as the inverse of the sum of some constant and the num-
ber of optimization update times up to the current time. Then
the stepsizes are heterogeneous among the agents since agents
have different optimization update time sequences and differ-
ent privacy preservation constants. Here, we also artificially
introduce a bounded closed convex projection set X, which
is known by all agents and is assumed to contain all the
optimal solutions of min

∑n
i=1 fi. Under this assumption, we

can see that both the optimal solutions of min
∑n

i=1 fi and
minX

∑n
i=1 fi are identical.

Different from differential privacy-based methods [35]–[39],
in our algorithm agents neither need to perturb their
objective functions nor disguise their estimates. Instead,
agents exchange the estimates with their neighbors directly.
This makes this new algorithm easily executable. Besides
this advantage, the following discussions also illustrate
that the introduced projection operation and asynchronous
heterogeneous-stepsize optimization mechanism can ensure
that the proposed algorithm is privacy preserving.

Remark 3: In Algorithm 1, after taking a weighted aver-
age of the estimates received from their neighbors and before
generating the estimates at the next step, agents make their
optimization updates or not. That is, agents make their opti-
mization updates just at some times. In fact, this intermittent
optimization update mechanism has appeared in the litera-
ture, for instance, the random sleep algorithms [13], [15], and

random asynchronous algorithms [18]–[20]. In [19] and [20]
agents choose to make their optimization updates or not ran-
domly, and the stepsize is random and taken as the inverse
(or some power of the inverse) of the number of optimiza-
tion update times up to the current time. Different from them,
the stepsize in our algorithm is deterministic. In fact, these
randomized optimization algorithms without constraints and
stochastic error are not privacy preserving in some sense since
based on the results in last section, the malicious agent can
discover other agents’ stepsizes and then the subgradients
with a positive probability if the malicious agent can take the
full knowledge of the adjacency matrix and observe all other
agents’ estimates.

Remark 4: The stepsize choice is extremely important to
the optimality of the converged solution in distributed subgra-
dient algorithm design. In fact, [10, Ths. 4.2 and 4.4] show
that for a network graph with doubly stochastic adjacency
matrix, the optimality can be guaranteed by a homogeneous
stepsize and may be not if the stepsizes are different among
agents. However, the results in last section show that the
homogeneous-stepsize design and simultaneous optimization
update mechanism make algorithm (2) not privacy preserving.
Therefore, the stepsize design brings a new challenge when
we take the privacy into account. In Algorithm 1, we take
the stepsize as the inverse of the sum of the privacy preserva-
tion constant and the times that agents make their optimization
updates up to the current time, similar to that in [18]–[20]. Our
result shows that the optimality can be guaranteed provided
that for each agent, the number of its optimization update times
is the same over different time intervals with the same length.

Remark 5: In Algorithm 1, for the unconstrained optimiza-
tion problem min

∑n
i=1 fi, we artificially introduce a projection

set from the viewpoint of privacy preservation. We can see
that Algorithm 1 also works for the constrained optimiza-
tion problem minK

∑n
i=1 fi. For this constrained optimization

problem, X can be taken as a subset that contains all the
optimal solutions of minK

∑n
i=1 fi.

A. Privacy-Preserving Properties

Before establishing the convergence and optimality of
Algorithm 1, in this subsection we first illustrate that
Algorithm 1 is privacy preserving from the two aspects of
projection operation and asynchronous heterogeneous-stepsize
optimization mechanism. In this section, we denote

x̃i(k) =
∑

j∈Ni

aijxj(k)

for notational simplicity.
First, when the “estimate” x̃i(k) − (1/ci + r)di(k) locates

outside the projection set X, from the property of convex
projection operator

PX(z) = PX(PX(z) + λ(z − PX(z))),2 ∀z ∈ X, λ ≥ 0

2This property of convex projection operator follows from the fact that
w = PX(z) if and only if (z − w)′(y − w) ≤ 0 for any y ∈ X. This fact can
be shown directly from the definition of convex projection.
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we know that the malicious agent cannot infer other agents’
subgradients at time k based on its received estimates even
though the malicious agent knows the adjacency matrix.
Moreover, when the estimate x̃i(k) − 1/(ci + r)di(k) locates
inside set X, Algorithm 1 evolves in the following form:

xi(k + 1) =
{

x̃i(k) − 1
ci+r di(k), if k = κi(r) for some r

x̃i(k), otherwise.

This reveals that this malicious agent can also not discover
other agents’ subgradients at time k based on the following
reasons. On one hand, even if the malicious agent knows the
adjacency matrix (A, b) and can observe all regular agents’
estimates, but note that since the malicious agent does not
know whether the regular agent i, i = n makes its optimization
update at time k, so in this asynchronous heterogeneous-
stepsize algorithm, knowing xi(k + 1) − x̃i(k) can not help the
malicious agent discover the subgradients; on the other hand,
even if the malicious agent also knows that agent i makes its
optimization update at time k, which helps the malicious agent
discover 1/(ci + r)di(k) from xi(k + 1) − x̃i(k), but this mali-
cious agent still can not discover the subgradient since it does
not know the stepsize 1/(ci +r) considering that the optimiza-
tion update time sequences and privacy preservation constants
are different among the agents and each agent only knows its
own privacy preservation constant and update time sequence.

As a sum, we conclude that when agents are far from the
projection set X, both the projection operation and the asyn-
chronous heterogeneous-stepsize optimization mechanism can
effectively protect agents’ privacy, while when close to the
desired optimal solution x∗ ∈ arg min

∑n
i=1 fi (the conver-

gence and optimality will be proven in the following theorem),
it is the asynchronous heterogeneous-stepsize optimization
mechanism that mainly protects agents’ privacy.

B. Convergence and Optimality

In this subsection, we will establish the convergence
and optimality of the newly proposed asynchronous
heterogeneous-stepsize algorithm. We next make an assump-
tion on agents’ optimization update time sequences {κi(r)}r≥1,
i = 1, . . . , n.

Assumption 4: For each agent i, there exists an integer
Ti > 0 such that 1 ≤ ti(s1) = ti(s2) < ∞, ∀s1, s2, where

ti(s) = |{r|sTi ≤ κi(r) < (s + 1)Ti }|
denotes the times of agent i’s optimization updates within the
interval [sTi, (s + 1)Ti).

Assumption 4 requires that each agent makes its own opti-
mization update with a constant number of times within any
time interval with some fixed length. Note that the numbers
of optimization updates within the time interval with this
fixed length may be different among the agents. We can see
that Assumption 4 holds if each agent makes its optimization
update in a periodic way, no matter whether the periods for
agents are the same.

We now establish the convergence and optimality of
Algorithm 1.

Theorem 7: Consider distributed subgradient asyn-
chronous heterogeneous-stepsize projection Algorithm 1 with

Assumptions 1, 2, and 4. Then the network will achieve an
optimal consensus, i.e., there exists x̂ ∈ arg min

∑n
i=1 fi such

that limk→∞ xi(k) = x̂, i = 1, . . . , n.

Proof: Without loss of generality, we assume in this proof
that the privacy preservation constants ci = 0, i = 1, . . . , n
since we can similarly show the convergence and optimal-
ity for the general case. First, it follows from xj(k) ∈ X,
Assumption 2 and the convexity of X that x̃i(k) ∈ X. Then
for k ≥ 1, Algorithm 1 can be rewritten as

xi(k + 1) = x̃i(k) + χi,kωi(k) (10)

where ωi(k) = PX(x̃i(k) − (1/r)di(k)) − x̃i(k), χi,k = 1 if
k = κi(r) for some r and χi,k = 0 otherwise.

In this proof, we still denote by L the upper bound of
subgradients of agents’ objective functions on X, i.e., L :=
supq∈⋃

i,x∈X ∂fi(x) |q|, which is a finite number because of the
boundedness of X and the convexity of fi. This implies that
Assumption 3 holds. Therefore,

|ωi(k)| ≤ 1

r
|di(k)| ≤ 1

r
L

and then it follows from Assumption 4 that
limk→∞ |ωi(k)| = 0.3 As a result, the network achieves
a consensus by [31, Th. 1], i.e., limk→∞ h(k) = 0, where
h(k) := max1≤i,j≤n |xi(k) − xj(k)|.

Take freely x∗ ∈ arg minX
∑n

i=1 fi(= arg min
∑n

i=1 fi) and
denote

ηi(k) = |xi(k) − x∗|2.
By applying the similar arguments for distributed subgradient
algorithms in [1], [2], and [10], we have that when k = κi(r)
for some r

ηi(k + 1) =
∣
∣
∣
∣PX

(

x̃i(k) − 1

r
di(k)

)

− x∗
∣
∣
∣
∣

2

≤
∣
∣
∣
∣x̃i(k) − 1

r
di(k) − x∗

∣
∣
∣
∣

2

≤ ∣
∣x̃i(k) − x∗∣∣2 + |di(k)|2

r2
− 2

r

(
xi(k) − x∗)′

di(k)

+ 2L

r
|xi(k) − x̃i(k)|

≤
∑

j∈Ni

aijηj(k) + L2

r2
− 2

r

(
fi(x̄(k)) − fi

(
x∗))

+ 4L

r
h(k)

where x̄(k) := (1/n)
∑n

i=1 xi(k) denotes the average of agents’
estimates at time k. Moreover, when k = κi(r) for any r, we
have ηi(k + 1) ≤ ∑

j∈Ni
aijηj(k). By the above two cases and

the double stochasticity in Assumption 2, we have
n∑

i=1

ηi(k + 1) ≤
n∑

i=1

ηi(k) +
n∑

i=1

χi,k

(
L2

r2
− 2

r

(
fi(x̄(k)) − fi

(
x∗))

+ 4L

r
h(k)

)

.

3We use the property of convex projection operator: |PX(y) − z| ≤ |y − z|
for any y ∈ R

m and z ∈ X, which comes from [2, Lemma 1(b)].
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Let T be the least common multiple of Ti, i = 1, . . . , n given
in Assumption 4. Then we get

n∑

i=1

ηi((s + 1)T) ≤
n∑

i=1

ηi(sT) +
3∑

i=1

μi(s) (11)

where

μ1(s) =
(s+1)T−1∑

k=sT

n∑

i=1

χi,k
L2

r2

μ2(s) = −
(s+1)T−1∑

k=sT

n∑

i=1

χi,k
2

r

(
fi(x̄(k)) − fi

(
x∗))

μ3(s) =
(s+1)T−1∑

k=sT

n∑

i=1

χi,k
4L

r
h(k).

We next estimate the sum of μi(s), i = 1, 2, 3 over s ≥ 1.
Define νi(s) = |{r|sT ≤ κi(r) < (s + 1)T}|. By Assumption 4,
νi(s1) = νi(s2),∀s1, s2. Thus, �i(s) := νi(0)+· · ·+νi(s−1) =
νi(0)s. We have

∞∑

s=1

μ1(s) =
∞∑

s=1

n∑

i=1

νi(s)∑

r=1

L2

(�i(s) + r)2

≤
∞∑

s=1

n∑

i=1

νi(s)L2

(�i(s))2
=

∞∑

s=1

1

s2

n∑

i=1

L2

νi(0)
< ∞.

(12)

We also have

μ2(s) + 2

s

n∑

i=1

(
fi(x̄(sT)) − fi

(
x∗))

= −
n∑

i=1

νi(s)∑

r=1

2
[
fi(x̄(κi(�i(s) + r))) − fi(x̄(sT))

]

�i(s)

−
n∑

i=1

νi(s)∑

r=1

(
2

�i(s) + r
− 2

�i(s)

)

× (
fi(x̄(κi(�i(s) + r))) − fi(x

∗)
)

≤
n∑

i=1

2Lνi(s)

�i(s)
(s) +

n∑

i=1

νi(s)∑

r=1

2Lζ r

(�i(s))2
(13)

where (s) := maxsT≤r<(s+1)T |x̄(r) − x̄(sT)|, ζ :=
sups≥0 maxsT≤r<(s+1)T |x̄(r) − x∗| < ∞ by the boundedness
of X and the fact that x̄(r) ∈ X. Taking the average of
both sides of (10), by Assumption 2 we have x̄(k + 1) =
x̄(k) + (1/n)

∑n
i=1 χi,kωi(k) and then

(s) ≤
(s+1)T−2∑

k=sT

1

n

n∑

i=1

χi,k|ωi(k)|

≤ 1

n

n∑

i=1

νi(s)∑

r=1

L

�i(s) + r
≤ L

s
.

This implies
∞∑

s=1

n∑

i=1

2Lνi(s)

�i(s)
(s) ≤

∞∑

s=1

2L2n

s2
< ∞. (14)

Moreover, we also have

∞∑

s=1

n∑

i=1

νi(s)∑

r=1

2Lζ r

(�i(s))2
≤

∞∑

s=1

1

s2

n∑

i=1

2Lζ

(νi(0))2

(1 + νi(0))νi(0)

2

< ∞. (15)

Combining with (13)–(15) together, we get
∞∑

s=1

(

μ2(s) + 2

s

n∑

i=1

(
fi(x̄(sT)) − fi

(
x∗))

)

< ∞. (16)

By the similar arguments given in the proof of [2, Lemma 8]
or [10, Lemma 4.3], we can also show that

∞∑

s=1

μ3(s) ≤
∞∑

s=1

n∑

i=1

νi(s)∑

r=1

4L

�i(s) + r
max

sT≤k<(s+1)T
h(k)

≤
∞∑

s=1

n∑

i=1

4Lνi(s)

�i(s)
max

sT≤k<(s+1)T
h(k)

=
∞∑

s=1

4Ln

s
max

sT≤k<(s+1)T
h(k) < ∞. (17)

By (11), (12), (16), and (17), we conclude that the limit
lims→∞

∑n
i=1 |xi(sT) − x∗|2 exists,

∞∑

s=1

1

s

n∑

i=1

(
fi(x̄(sT)) − fi

(
x∗)) < ∞

and thus lim infs→∞
∑n

i=1(fi(x̄(sT)) − fi(x∗)) = 0. Let
{x̄(srT)}r≥0 be a subsequence of the bounded sequence
{x̄(sT)}s≥0 such that limr→∞

∑n
i=1(fi(x̄(s

rT)) − fi(x∗)) = 0
and the limit limr→∞ x̄(srT) = x̂ exists for some x̂. Therefore,
it follows from the continuity of fi and the closedness of
X that x̂ ∈ arg minX

∑n
i=1 fi. By replacing x∗ with x̂, we

can similarly show that the limit lims→∞
∑n

i=1 |xi(sT) − x̂|2
exists. This combines with limr→∞ x̄(srT) = x̂ and what
we have shown that the consensus is achieved imply that
lims→∞ xi(sT) = x̂, i = 1, . . . , n. By the proceeding rela-
tion and considering that limk→∞ |ωi(k)| = 0, we obtain
limk→∞ xi(k) = x̂, i = 1, . . . , n with x̂ ∈ arg min

∑n
i=1 fi.

We complete the proof.
Remark 6: In the designed stepsize, ci, i = 1, . . . , n are

taken as nonnegative constants. In fact, from the proof of the
above theorem we can find that the convergence and optimality
can also be ensured if these constants are generalized to time-
varying cases provided that these time-varying constants are
bounded. It can be seen that this generalization can further
improve the level of privacy preservation.

Remark 7: We here present some discussions on the con-
vergence rate of our algorithm. The convergence rate estimate
is generally complicated because it depends on the property of
objective functions, the choice of initial conditions, the algo-
rithm parameters, and the network structure. But for the case
of strongly convex objective functions and completely con-
nected graphs with uniform weights, by the arguments in the



LOU et al.: PRIVACY PRESERVATION IN DISTRIBUTED SUBGRADIENT OPTIMIZATION ALGORITHMS 2163

proof of Theorem 7 we can get the following convergence
estimate:

∣
∣x̄((k + 1)T) − x∗∣∣2 ≤

(
1 − b

k

)
|x̄(kT) − x∗|2 + c

k2

for some b > 0, c > 0, where x∗ is the unique optimal solution,
T is the least common multiple of Ti, i = 1, . . . , n given in
Assumption 4.

C. Numerical Example

We here present a numerical example to illustrate the algo-
rithm performance. We consider a network with 1000 agents.
The network graph is connected, undirected and is generated
by the Erdős-Rényi random graph model G(200, 0.075), where
0.075 is the probability that each possible arc is included in
this graph. The adjacency matrix Ā is taken as

Ā = I1000 − 1

dmax + 1
L

where dmax, L is the maximum degree and the Laplacian
matrix of this network graph, respectively. The individual
objective function of agent i, i = 1, . . . , 1000 is

fi(x) = x′Qix + d′
ix, x ∈ R

5

where Qi ∈ R
5×5 is a randomly generated symmetric positive

definite matrix and di ∈ R
5 is a random generated vector. Here,

we do not consider the artificially introduced constrained set
X, i.e., we take X = R

5 in Algorithm 1. The initial conditions
are taken as xi(0) = 0, i = 1, . . . , 1000.

We compare our algorithm 1 with the standard DSSHSA (2).
Let us specify the stepsize setting for each algorithm.

1) Our Algorithm: The optimization time sequence is ran-
domly generated before executing the algorithm. For 500
agents, it makes 100 optimization updates within anyone
of a set of consecutive intervals with length 200 at some
randomly generated time instances [i.e., for these agents
Ti = 200, ti(s) = 100 in Assumption 4], while for the
left 500 agents, it makes 150 optimization updates within
anyone of a set of consecutive intervals with length
200 at some randomly generated time instances [i.e.,
Ti = 200, ti(s) = 150]. The privacy preservation con-
stants are taken as zero and the stepsize of each agent is
taken as the inverse of the total number of this agent’s
optimization update times up to the current time if the
current time is this agent’s optimization time.

2) DSSHSA (2): The stepsize is taken as αk = 1/(k + 1).
We take the following two measures as the algorithm

performance index.
1) The Sum of the Distance of All Agents’ Estimates

to the Optimal Solution:
∑1000

i=1 |xi(k) − x∗|, where x∗
is the unique optimal solution of the sum objective
min

∑1000
i=1 fi.

2) Consensus Errors of Agents’ Estimates: |x(k) − Ā ⊗
I5x(k)|, where x(k) = (x′

1(k), . . . , x′
1000(k))

′ ∈ R
5000,

⊗ denotes the Kronecker product.
Figs. 1 and 2 show the trajectories of sum of the distance of
all agents’ estimates to the optimal solution (SDOS) and con-
sensus errors of agents’ estimates (COE) in our algorithm and

Fig. 1. Two trajectories of the measure SDOS in our algorithm and
DSSHSA (2).

Fig. 2. Two trajectories of the measure COE in our algorithm and
DSSHSA (2).

TABLE I
VALUES OF SDOS AND COE IN OUR ALGORITHM AND

DSSHSA (2) AT SOME TIME INSTANCES

DSSHSA (2), respectively. Table I shows the values of SDOS
and COE at some particular time instances. The figures and
the table show that our algorithm converges faster at the early
stage of algorithm execution but slower after a period of time
than DSSHSA (2). This illustration is intuitive since at the
early stage agents are far from the optimal solution, more con-
sensus iterations among agents before optimization operation
will lead to faster convergence, while when agents are close
to the optimal solution after a period of time, the consensus
iteration is somehow no longer necessary and the optimization
iteration will dominate the consensus iteration on the conver-
gence performance. Although our algorithm converges slower
than DSSHSA (2) after a period of time, our algorithm has
the additional privacy-preserving property as shown in this
paper.
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V. CONCLUSION

In this paper, we considered the privacy-preserving features
of distributed subgradient optimization algorithms. We first
showed that the DSSHSA is not privacy preserving in the
sense that the malicious agent can asymptotically discover
other agents’ subgradients for almost all adjacency matrices
except a zero Lebesgue measure weight set. We also proposed
a new distributed subgradient asynchronous heterogeneous-
stepsize projection algorithm, in which agents make their
own optimization updates asynchronously and the stepsizes
are different among the agents. Compared with the exist-
ing privacy-preserving distributed algorithms, our algorithm
allows agents to exchange estimates directly with their neigh-
bors and does not employ any additional privacy-preserving
technique. The introduced convex projection set and the
asynchronous heterogeneous-stepsize optimization mechanism
can effectively protect agents’ subgradients. Moreover, we
also showed the convergence and optimality of the newly
proposed algorithm under mild assumption on the designed
stepsize. Other interesting problems, including investigating
privacy-preserving properties of other distributed optimization
algorithms such as subgradient random algorithms [18]–[20],
dual averaging algorithm [7], and ADMM [8], [9], and devel-
oping other privacy-preserving algorithms using the proposed
techniques in this paper, are still under investigation.
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[1] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for
multi-agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1,
pp. 48–61, Jan. 2009.
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