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In this online appendix, we prove Proposition 6 when there is no idiosyncratic noise (i.e., €;(j)) =

0 for all 7 and j). All notation has the same meaning as in the main text. We consider two cases:

CASE 1. u contains at least two nonzero sub-vectors (u; # 0 for at least two indices 7). For this
case, it is without loss of generality to assume that Var(y) is positive definite. Otherwise, re-write

.y as .y (e # 0), where y is a maximal linearly independent subset of y, and apply the same

technique by substituting p,y with @,y/|f1,|, and ¢, with ¢, /| |-

All the proofs are the same as that in the proof for the case that there is idiosyncratic noise in
the main text except for a separate argument to show that (A.23) in the main text cannot hold,

reproduced here for convenience as:

Var(p) Var(p,y;) — Cov(u, piy;)* = 0, (1)

with z; replaced by y; in the absence of idiosyncratic noise. Suppose, on the contrary, that (1)
holds for every i. Because p'y # 0 and p contains two nonzero sub-vectors, it follows from (1)
that for every 4, Y _; p;y; = p;y; with probability one. That means that for every i, p;y; = 0 with
probability one. But this is impossible, given p; # 0 for some k& and the assumption of positive

definiteness of Var(yy) in Assumption 1.
CASE 2. p contains only one nonzero sub-vector.

Without loss of generality, we assume p; # 0 and p; = 0 for i # 1. Because Q; = /s,
Q:/|Q:| — p. Observe that

Cov(Qy, 0)
Var(Q;) + Var;(u)

Cov(Q:/]Q:|,0)
Var(Q,/|Q:|) + Var,(u)/|Q;

Following the same arguments in the proof of Claim 1 in the main text, we have Var,(u)/|Q;|* —

COV(Qt7 yz) =

E Cov(Q:/|Q:|,y:). (2

0. Similar to the proof in Proposition 4, we know that {Q;} is bounded. For easy reference, we



repeat equations (14) and (15) from the main text below:
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@ A; Varg(0]7) )
1+ Zn Cov(Q,0)—Cov(0,y;)’ Var~1(z;) Cov(Q,y;)

i=1 A; Var(0|i)[Var(Q)+Var(u)—Cov(Q,y;)’ Var—1(z;) Cov(Q,y;)] (4)

T = n 1
Zi:l A; Var(0]1)

Because Q;; — 0 for each i # 1 (and with (2) and Var;(u)/|Q;|*> — 0 in mind), we can pass to
the limit in (3) to obtain

Var () y1) Cov(8, y;) = Cov(6, u)y1) Cov(p)y1, i) 5)

for each s = 2,...,n. But (5) also holds for : = 1. To see this, multiply both sides of (3) by the

positive definite matrix Var(y,) — C2/(@uy) Cov@uy )

, then by Q,, and finally pass to the limit as

Var(Q¢)+Var(u)
t — oo. Then:
Cov(Q¢,0)
Q. |Var(y,) — Cov(Q:,y1) Cov(Qy, y1) _ 1t [COV(&%) ~ Var(Qy) 1 Vari(@) COV(Qt,yl)]
S Var(Q) + Vary(u) i A, Var, (0]1)

" Cov(Q¢ |0
\%lj [COV(Q, Y1) — Var(Qt/‘Q(t%:_/\l/g;J(u)mQt‘2 Cov(Q:/|Q:|, yl)]
= Q| — 0,

Ay Var(0]1)
where the second equality follows from (2) and the limit follows from the boundedness of {Q;},
Q1:/|Q:| — 11, Q:/|Q:| — p (s = 0 for every i > 2), and Var,(u)/|Q;|*> — 0. So

Cov(Q:, y1) Cov(Qy, y1)’
Var(Q,) + Var;(u)

Combining (2), (3) and (6) along with Var,(u)/|Q:|> — 0, we must conclude that

{Var(yl) — } Qlt — 0. (6)

Cov(l’l’llyla 9) / _
COV(07 yl) Var(“,lyl) COV(”’th yl) =0 (7)

so that (5) also holds for ¢ = 1.



Now, (7) along with Cov (6, y;) # 0" also implies that
Var™'(y,) Cov(d,y)

# = TVar () Cov(@ o) (8)
and
o) Var () Cov(o, )l ©)
Multiplying both sides of (5) by u;; and adding over all 7, we have
Var(pyy1) Cov(pe, 0) — Cov(0, pyyr) Cov(pe, piy:) =0 (10)
for every t, while forz = 2,... n,
Cov(pe,0) — Cov(0,y;) Var (y;) Cov (s, y;)
— Cov(0, wyy1) — Cov(0,y;)' Var~ (y;) Cov(p 1y, y;)
_ Covl6, wiy) [Var(pi 1) — Cov(p 1, y:) Var™ (y;) Cov(p 1, 9i)] (11)

Var(pyy1)
where the limit follows from the fact that p; = 0 for every ¢ > 2, and the equality again makes
use of (5). By (9) and (10), Cov(uy,0) = | Var '(y;) Cov(0,y:)| Cov(ps, p)yy:) for every t.

Consequently, for every t,
Cov (g, ) — Cov(0,y1) Var(y1) Cov(p, y1)
= Cov(p, 0) — | Var™! (y1) Cov(0, y1)| Cov (e, piyr) =0, (12)

where the first equality uses (8). (3) and (12) together let us conclude that for every ¢,

_ Var™' (y,) Cov(4, 91

Qu = Ay Var,(0]1) (13)

*If Cov(6,y1) = 0, then Cov(6, y;) = 0 for all 5 by (5), which contradicts the hypothesis that Cov(6, y;) # 0 for
at least one 1.
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To see this, use (3) to observe that (13) is equivalent to

COV(Qt, y1) COV(Qt> yl),
Var(Q;) + Var;(u)

= Varfl(yl) Cov(0, ).

Cov(Q:,0)

Var(y;) — Var(Q;) + Var,(u)

}1 [Cov(&,yl) — Cov(Q:,y1)

Cov(Q:,y1) Cov(Q:,y1)’
Var(Q¢)+Varg(u)

Therefore, multiplying by Var(y;) — on both sides of this equality, we see that

to establish (13), it suffices to show that

Cov(Qy, 0)
Var(Q;) + Var,(u) Cov(Qiy1)

Cov(Q:, y1) Cov(Qy, y1)’
Var(Q:) + Var,(u)

The above equality is further equivalent to

Cov(Q:,0)
Var(Q;) + Var,(u)

which is indeed true due to (12).

COV(@, yl) -

Var(y,) — Var~*(y;) Cov(6,y,).

Cov(Q:, y1) Cov(Qy, y1)

Var(Q,) + Var;(u) Var™*(y1) Cov(0 ).

Cov(Q:,y1) =

We have

14 Zn Cov(Q+,0)—Cov(8,y;)’ Var~' (y;) Cov(Q:,y:)
i=1 A, Var¢(6]i)[Var(Q¢)-+t2 Vart (u)—Cov(Qr,y;)’ Var—1(y;) Cov(Q+,y;)]
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|Q:¢| £=i=1 A; Var(8]i)[Var(pe)+:7 Vare (u)—Cov(pe,y:)' Var— ' (y;) Cov(pe,yi)]

Yt Avan @D
=1 Al Vart(Q\i)
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1 n
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D il EVan @) ’
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where the first equality follows from (4) (note that here there is no idiosyncratic noise, so z; = y;),
the second equality uses the fact that u, = Q;/|Q;|, and the third equality follows from (12).
Consequently, from (14) and the fact that |Q;| — |Q1;| — 0 (because Q;; — 0 for every i > 2), we

have

1+ Aq Vary(0]1) Z Cov (0,1 y1)
| Var =1 (y1) Cov(0,y1)| 1=2 A; Var¢(0|i) Var(u)y1)

Ve — n
zz 1A; Vart(0| i)
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— 0. (15)



From (9) we also have

Aq Vary(0]1) Cov (0,1 y1)
L+ \Var_ll(y1 Cov(0,y1)| ZZ 2 A; Var(0|i )\/}ar(u yl) 1+ Al Vart(0|1) Zz 2 A; Vart(6'|z)

n 1
Z’L 1 A; Vart(e\z) Zz:l A; Var (0|i)
= A; Vary(0|1). (16)

Combining (15) and (16), we obtain

— Ay Var,(6]1) — 0. (17)

From (13) and (17), we can derive the two limits:
w1 — Var *(y;) Cov(0,y,), m; — 0,i =2, ....n, and 77 Var(u,) — 0.

Thus, Cov(6, y;) = Cov(7r, y;). Multiplying by 7r; on both sides, we obtain Cov (6, 7w) = Var().
Combining this with (5) leads to Cov(f, y;) = Cov(m,y;) for every i > 2.

In a similar way to (13), we can show that a;; = Var ' (y;) Cov(6, y,) for every t. By (12), we
have 31; = 0 for every t. If follows from (5) that a¢;; — 0 for any ¢ > 2. By (11) and (9), we have
Bi || — | Var~(y;) Cov(6,y,)|, i.e., By — 1 for any i > 2. Then the limit on {¢,} follows from

the equality (8) in the main text, and the proof is now complete. 0



