
Available online at www.sciencedirect.com
ScienceDirect

Journal of Economic Theory 183 (2019) 594–624

www.elsevier.com/locate/jet

Information aggregation in a financial market with 

general signal structure ✩

Youcheng Lou a r© Sahar Parsa b r© Debraj Ray c,d,∗ r© Duan Li e r©
Shouyang Wang a,f,g

a MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China
b Department of Economics, Tufts University, United States of America

c Department of Economics, New York University, United States of America
d Department of Economics, University of Warwick, United Kingdom
e School of Data Science, City University of Hong Kong, Hong Kong

f Center for Forecasting Science, Chinese Academy of Sciences, China
g School of Economics and Management, University of Chinese Academy of Sciences, China

Received 29 October 2018; final version received 25 March 2019; accepted 13 May 2019
Available online 22 May 2019

Abstract

We study a financial market with asymmetric, multidimensional trader signals that have general correla-
tion structure. Each of a continuum of traders belongs to one of finitely many “information groups.” There is 
a multidimensional aggregate signal for each group. Each trader observes an idiosyncratic signal about the 
fundamental, built from this group signal. Correlations across group signals are arbitrary. Several existing 
models serve as special cases, and new applications become possible. We establish existence and regularity 
of linear equilibrium, and demonstrate that the equilibrium price aggregates information perfectly as noise 
trade vanishes.
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1. Introduction

Consider an economy in which a single risky asset is traded, with unknown fundamental of 
common value to all of a continuum of individuals. Each trader belongs to one of a finite number 
of “information groups,” which could vary in size. There is a multidimensional aggregate signal 
for every information group. Each individual receives an idiosyncratic signal built from her group 
signal plus iid noise. The setting is multivariate normal, with arbitrary correlation structure across 
fundamental and signals. In addition, each trader also observes the asset price and can make 
inferences about the fundamental using that price. As in the seminal contribution of Hellwig 
(1980), traders retain the incentive to use their private signals in the presence of noise trade. We 
will allow noise trade to converge to zero to obtain our information aggregation result in the 
limit.

We are therefore in a classical rational expectations equilibrium (REE) world, but with signif-
icantly added generality in information structure and dimensionality. Moreover, we allow traders 
to differ not only in their access to information, but also in their attitudes to risk. Indeed, we 
permit risk heterogeneity both within and across information groups. Of course, we can nest 
several existing REE models — among them Grossman (1976) and the finite-agent model of 
Hellwig (1980) — by properly selecting the mass and the risk-aversion coefficient of each trader 
type. But well beyond that, the multidimensional signal structure we work with can facilitate 
other investigations. Except for normality, we do not impose restrictions on aggregate signals 
and allow these to exhibit any degree of asymmetry, or heterogeneity in correlation structure. 
This generality is important. For instance, given different locations, risk attitudes or informa-
tional capacities, traders might have access to diverse sources (newsletters, advisory services 
etc.) for their private information, which leads to an asymmetric correlation structure not han-
dled by the classical models. And multidimensionality acquires particular salience when traders 
share their private signals with their neighbors via a social network. Then the effective signals 
of traders are essentially many-dimensional, because two signals cannot be aggregated ex-ante 
without knowledge of the full equilibrium structure generated by the price system. Therefore 
information-sharing over a network cannot be handled by models with one-dimensional sig-
nals.

Apart from conceptual generality, new analytical issues arise when these considerations — 
asymmetry, multidimensionality, as well as arbitrary cross-signal correlation — are studied. Even 
the seemingly intuitive properties of equilibrium that are immediate in the Grossman-Hellwig 
setup must now be proved at a non-trivial level when the information structure is general. Among 
these properties is the regularity of any linear equilibrium: an increase in demand implies also 
an increase in price. More importantly, and owing to the generality of our signal structure, the 
existence arguments given in Hellwig (1980) cannot be applied to solve our model. We resort to 
a non-standard argument involving sequences of fixed points to establish the existence of a linear 
equilibrium price function.
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An accompanying complication concerns the impact of signals on the equilibrium price. When 
those signals are independently generated — and positively related to fundamental value — they 
exert a positive influence on prices, as in Hellwig (1980). Because our model admits general cor-
relation across signals, no parallel assertion is available here: the corresponding coefficients of 
signals in the price function are generally ambiguous in sign. They depend on the correlation pat-
tern, the sizes of information groups, as well as the distribution of risk attitudes, though we can 
pin down the signs of the weights for some special cases. Nevertheless, it is in this general context 
that we are able to revisit a solution to the Grossman-Stiglitz paradox first investigated by Hellwig 
(1980).1 If an imaginary “super-agent” were to observe every one of the signals, she would pos-
sess a best prediction of the fundamental, which is a linear function of the signal vector. Any price 
function which is the same linear function (up to an intercept term) would aggregate information 
perfectly. But an agent observing such a price function would entirely ignore her own signals. 
Indeed, she would strictly prefer not to use any of her information, whether or not it is freely 
available. Even the redundancy that tolerates some degree of mixing and allows information to 
seep in via indifference, is not to be had. But then: how can the market imitate the super-agent?

Certainly, with the existence of noisy movements in trades, prices lose their ability to per-
fectly aggregate information, contaminated as they must be by stochastic demand shocks.2 Then 
traders will use their own information at least to some degree, which therefore enters the price. 
Specifically, we show that the equilibrium price is positively correlated with the value of the 
fundamental, assuming, of course, that at least one of the observed signals is correlated with that 
value. But the more subtle question remains: as noise trade vanishes, must the price function 
converge to the perfect information aggregator? Our answer to this question is in the affirmative: 
as the variance of noise demand converges to zero, the equilibrium price aggregates information 
perfectly, fully capturing a linear relationship, including weights and correlation patterns, across 
the fundamental and aggregate signals. This is consistent with (and substantially generalizes) the 
observations in Grossman (1976) and Hellwig (1980).

Section 2 introduces the model. Section 3 characterizes linear equilibria. Section 4 states 
and discusses the information aggregation result. Section 5 discusses the weights of aggregate 
signals on prices. Section 6 discusses related literature. Section 7 concludes. All proofs are in the 
Appendix.

2. The model

There is a single risky asset and a single trading period. The risky asset is in fixed supply X ∈
R and has fundamental value θ , common to all agents. The value is not directly observed by mar-
ket participants, but it generates signals, the structure of which will be described in detail below.

There is a unit measure of market participants or traders. Each trader has a CARA utility func-
tion and maximizes her conditional expected utility of her net profit W based on her information 
set F :

1 See Grossman (1976, 1978) and Grossman and Stiglitz (1980) for more discussion on information aggregation.
2 Variants of such REE models have been developed; see, for example, multi-asset settings (Admati 1985; Pálvölgyi and 

Venter 2015b; Chabakauri et al. 2017), equilibrium with a continuum of traders (Grossman and Stiglitz 1980; Ganguli 
and Yang 2009), signals about of the supply of tradable assets (Ganguli and Yang 2009; Manzano and Vives 2011; 
Diamond and Verrecchia 1981; Verrecchia 1982); signal transmission and sharing in social networks (Han and Yang 
2013; Ozsoylev and Walden 2011; Colla and Mele 2010; Walden 2019), etc.
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E
[− exp{−ρW }|F]

. (1)

In the setting at hand, W = x(θ − p), where x is the holdings of the asset and p its price.
The parameter ρ is the coefficient of absolute risk aversion and it will vary across traders, 

as will the sources of information. Specifically, a trader is described by her type r , which lies 
in some finite set R. Let τ(r) be the measure of individuals of type r . An individual type r
has two components: {i(r), ρ(r)}, where i(r) denotes her information group membership, and 
ρ(r) denotes her risk-aversion. Each information group i has a positive mass. Members of that 
group access a distinct collection of newsletters, websites, and advice that effectively permit 
a multidimensional signal, yi = (yi1, ..., yim)′ ∈ Rm, to be “directed” towards them. There is 
one such signal for every information group — the multiple dimensionality m of each group 
signal allows this structure to be quite general.3 For instance, two information groups might have 
access to some common subset of signals. We refer to y = (y′

1, . . . , y
′
n)

′ as the aggregate signal 
structure of the economy.4

If trader j belongs to information group i, she observes a signal which communicates this 
aggregate signal yi with idiosyncratic noise εi (j) ∈ Rm5:

zi (j) = yi + εi (j).

This signal and the price will determine the trader’s demand; see (2) below. In addition to such 
demands, there is noise demand u, to be interpreted as the stochastic demand of “noise traders” 
left unmodeled in this paper. Assumption 1 below will be maintained throughout.

Assumption 1. All exogenous random variables are normal, with means normalized to zero. The 
variance-covariance matrix of yi is positive definite for every i, and Var(θ |y) > 0.6 Idiosyncratic 
noise εi (j) in each information group i could be degenerate, but if not, it is iid across individu-
als j ,7 independent of other random variables, with positive definite variance-covariance matrix. 
Noise demand u is independent of all other exogenous random variables, and has positive vari-
ance.

Except for joint normality and the reasonable non-degeneracy requirement that group signals, 
taken together, cannot fully pin down the fundamental, we impose very little restriction on the 
aggregate signal structure y or on the precise relationship of its several components with the 
fundamental θ . Even the assumed positive-definiteness of yi is essentially without any loss of 
generality: after all, it is always possible to remove the “redundant components” from the signal 
yi . We permit arbitrary correlation patterns across the private signals of traders, and in addition 

3 Given the flexible structure of variances, it is essentially without loss of generality to assume that all group signals 
have the same dimension m. We do so only for ease of exposition; all results hold for the more general case.

4 The somewhat clumsy use of the double transpose ensures that all vector notation is for column vectors.
5 This hierarchical structure of signals shares the same spirit as the one in Myatt and Wallace (2012), in which signals 

received by individual traders contain both some “sender noise” regarding the fundamental, as well as receiver-specific 
noise around the sender’s signal realization.

6 The variance-covariance matrix V of a random vector x is always positive semi-definite because for any d with the 
same dimension as x , d ′V d = Var(d ′x) ≥ 0. Therefore V is not positive definite if and only if there is nonzero d with 
d ′x degenerate. Thus, the positive definiteness of the variance-covariance matrix of yi equivalently requires that any 
component of any group signal cannot be expressed as a linear combination of other components of this group signal.

7 We adopt the usual convention for “iid” across a continuum of random variables without further comment. We allow 
for general correlation across the dimensional components of each idiosyncratic noise εi (j).
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we allow each of these signals to be multidimensional. As a consequence, several existing models 
are nested within our formulation by the suitable choice of signals y and (if needed) by setting 
the dimension of signals to one and the variance of idiosyncratic signals in each information 
group to 0. As examples, we have:

(a) Informed and uninformed. A fraction of a continuum of traders receives the same sig-
nal: yi = θ + ε (the noise ε is independent of θ ), while the remainder receives no signal at all 
(Grossman and Stiglitz 1980).

(b) Idiosyncratic information from a single source. All traders have the same information 
source, but their signals are drawn independently: yi = θ + εi , where the εi ’s are mutually in-
dependent (Grossman 1976; Hellwig 1980). (We provide other specific connections to Hellwig 
1980 below.) This case is sometimes referred to as the common-values model.

(c) Multiple information sources with identical covariance. Traders have different information 
sources, but these are correlated with a special pattern: for single-dimensional signals {yi} across 
n traders or trading groups, we have Var(yi) = Var(θ) for any i and Cov(yi, yj ) = ς Var(θ) for 
any i, j , with 0 ≤ ς ≤ 1, where θ is the fundamental of the risky asset (Vives (2008), p. 381, but 
with notation changed to fit ours). The actual signal received may be contaminated by additional 
noise: zi = yi + εi , also accommodated in our setup. When 0 ≤ ς < 1 and Var(εi) = 0 for every 
i, this case is sometimes referred to as the private-values model, though we must add that the 
payoff still arises via a common fundamental θ .

(d) Social connections. Suppose that information is shared across a social network with node 
set V = {1, . . . , n} and arc set E ⊆ V × V . Initially, each trader i receives a private signal si =
θ + εi , where the error terms εi are mutually independent with mean zero. These private signals 
are shared via social connections.

One approach to dealing with this setting is to presume that after neighboring signals 
are observed, each trader i forms some scalar statistic — say the average 

∑
j∈Ni

sj /|Ni | =
θ + (

∑
j∈Ni

εj )/|Ni |, where Ni = {j |(j, i) ∈ E} denotes trader i’s neighbor set — includ-
ing herself — in the network (Ozsoylev and Walden 2011). Because the derived error terms ∑

j∈Ni
εj /|Ni |, i = 1, . . . , n are correlated, this model cannot be nested under Hellwig (1980). 

But it is a special case of our formulation: set yi = ∑
j∈Ni

sj /|Ni |.
This is a reasonable approach, but has its limits. Except for special situations, there is no rea-

son why each trader should take an average of signals. Indeed, averaging isn’t the problem: any 
exogenous aggregation method is suspect. The equilibrium price will affect the cross-weighting 
of signals in ways that cannot be pinned down a priori, except in very restrictive settings. A 
model of signal-sharing in networks must therefore, of necessity, need to handle the case of mul-
tidimensional signals at the individual level. How the individual aggregates those signals is part 
of the equilibrium structure. In the language of our model, we simply set yi = {si , j ∈ Ni}.8

(e) Informational hierarchies. Another special case that is easily handled by our framework 
is one of informational hierarchies, generalizing models with the usual binary distinction be-
tween “informed” and “uninformed” traders. Think of a setting with “fundamental signals” 
(s1, s2, . . . , sm). Traders have access to subsets of these signals. That induces a partial order: 
trader j is more informed than trader j ′ if trader j sees a larger subset of the signal space than 
trader j ′. Once again, the multidimensional structure can be deployed to easily handle this case.

8 There are other REE models in which traders’ signals are multidimensional. For instance, Goldstein and Yang (2017)
study the implications of information disclosure in a multidimensional signal setting, where traders also observe the 
public signals released by the government, apart from the price and their own signals.
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Notice how in cases (d) and (e) — and especially in (e) — it is imperative to impose the 
weaker condition that the variance-covariance matrix of yi is positive definite for each i, rather 
than the stronger restriction that the variance-covariance matrix of y is positive definite. The 
latter condition will fail if one information group has access to a superset of signals compared to 
another.

(f) Two-stage models. Our model does not fully exploit the special structures in (d) and (e) to 
provide results that are specific to these settings. At the same time, it does throw light on some 
basic questions of network formation or information acquisition. Consider a class of two-stage
models, in which individuals choose to form costly links with other individuals in a network, 
or invest in acquiring costly information. Subsequently, they interact in the setting described 
in this paper.9 One of our main results is Proposition 6, which show that with vanishing noise 
trade, prices efficiently aggregate all information in the signals. This has the implication that 
while new information not held by anyone is always welcome, the sharing or acquisition of 
existing information that is already held by others will have low priority as noise trades vanish. 
In particular, the better the job that a market does in aggregating information, the less incentive 
will there be to build social networks. To the extent that the destruction of such social networks 
could have implications for the decay of cultural connections and friendships, this is a depressing 
corollary of Proposition 6.

Particularly relevant is the finite-agent model studied in Hellwig (1980) that we extend and 
generalize. Apart from the dimensional generalization, there are also two additional distinct 
differences, the second of which is more important than the first: (i) Hellwig (1980) studies a 
finite-agent setting (along with a large economy which is the limit of a sequence of finite-agent 
economies), while our model has a continuum of agents, thereby making exact the competitive 
price-taking assumption; and (ii) Each agent i in Hellwig (1980) receives a private signal equal to 
the fundamental θ plus independent noise. Both (i) and (ii) can be represented as special cases of 
our model, in the following way. Think of each Hellwig agent i as a positive measure of atomless 
agents in our setting — information group i. Assume that the group signal yi is unidimensional, 
with yi = θ + ζi for independent noises {ζi}. Finally, set εi(j) equal to zero for all atomless indi-
viduals j in the group, so that everyone in i sees yi exactly. This is, in essence, a representation 
of Hellwig’s setting that fits perfectly with the perfect competition assumption.10 The presence 
of cross-signal correlation and signal multidimensionality does mean that in our more general 
case, a different approach to information aggregation needs to be taken.

Details on notation. For expositional ease in a notationally intensive model we use some non-
standard notation. The operator Var will stand for variance (or sometimes a variance-covariance 
matrix, in which case we use boldface Var) and Cov will stand for covariance (or sometimes 
a vector of covariances, in which case we use boldface Cov). For instance, Var(p) will be the 
scalar variance of the price, whereas Var(zi ) will stand for the variance-covariance matrix of 
an individual’s signal zi in group i. For any vector μ = (μ′

1, . . . , μ
′
n)

′ (with each component 
m-dimensional) and random variable x, Cov(μ, x) is shorthand for Cov(

∑n
k=1 μ′

kyk, x) and 
Var(μ) stands for Var(

∑n
k=1 μ′

kyk), where y = (y′
1, . . . , y

′
n)

′ is the aggregate signal structure. 
These are scalars as 

∑n
k=1 μ′

kyk is a unidimensional random variable. We also use Var(θ |i) to 

9 Considerations of information-sharing are important in a variety of contexts. For instance, one might be interested in 
the trade-off between possible collusion via information-sharing and direct welfare losses that could arise if information-
sharing is entirely prohibited (Boyarchenko et al. 2017).
10 We say “in essence,” because we still have a continuum of agents when the idiosyncratic variance is zero. But of 
course, this extreme case can mathematically mimic a finite number of price-taking agents.
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describe the variance of the fundamental θ conditional on a signal received by an individual in 
group i, and the price. Neither the value of the signal nor the price will appear in the notation 
because variance updating is independent of the specific realizations; more on this below. For 
any random variable x and group signal yi , Cov(x, yi ) is shorthand for the vector of covariances 
(Cov(x, yi1), ..., Cov(x, yim))′, and in the special case where x = ∑n

k=1 μ′
kyk for some vector 

μ, we write Cov(μ, yi ) for the vector (Cov(μ, yi1), ..., Cov(μ, yim))′. If x is a vector and γ is a 
scalar, then x/γ simply stands for a vector where all entries are divided by the scalar γ . For two 
matrices A and B , A 	 B (or A ≺ B) means that the matrix B − A is positive semi-definite (or 
positive definite). Finally, the 2-norm of a vector or matrix is denoted by | · |.

3. Equilibrium

3.1. Definition and description

A typical trader j of type r has information {zi(r)(j), p}. She maximizes her CARA pay-
off function in (1). When μ and v are respectively set equal to her conditional expectation 
E(θ |zi(r)(j), p) and conditional variance Var(θ |zi(r)(j), p) of the fundamental, it is well known 
from the CARA-Gaussian model that

E
[− exp{−ρ(r)W }|zi(r)(j),p] = − exp

{
−ρ(r)

[
x(μ − p) − ρ(r)

x2v

2

]}
.

It follows that maximizing (1) is equivalent to maximizing x(μ − p) − ρ x2v
2 . Consequently, the 

optimal demand for the risky asset by trader j of type r is given by

x∗
j = E(θ |zi(r)(j),p) − p

ρ(r)Var(θ |zi(r)(j),p)
. (2)

By Assumption 1, the variance of θ remains strictly positive after conditioning on any or all of 
the observables, so this object is well-defined. In this paper, we study linear equilibria, and so 
focus on the class of affine price functions given by

p =
n∑

k=1

π ′
kyk + γ u + c, (3)

where π = (π ′
1, ..., π

′
n)

′ represents the weights on group-specific signal vectors (each component 
is m-dimensional so that πk = (πk1, ..., πkm)′ ∈ Rm for each k), γ �= 0 is the weight on noise 
trade, and c is an intercept term. Given this setting, we can describe the conditional expectation 
E(θ |zi(r)(j), p) for a trader j of type r . The informational equivalent of the price p is the variable 
p − c, where the intercept term is netted out. Because idiosyncratic noise εi (j) within each 
information group i is iid, the conditional expectation is therefore described by a system of 
weights {αi(r), βi(r)}, with αi(r) ∈Rm, βi(r) ∈ R, such that for any trader j of type r and signals 
(zi(r)(j), p) received by her,

E(θ |zi(r)(j),p) = α′
i(r)zi(r)(j) + βi(r)(p − c), (4)

where this derivation invokes the projection theorem for normal random variables.
Now, the conditional variance Var(θ |zi(r)(j), p) depends on trader j only via her information 

group identity i(r), but not via the particular signal zi(r)(j) she receives, nor her risk type, nor 
the particular realization of p. So we may write the conditional variance as Var(θ |i), but with 
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the understanding that Var(θ |i) does depend on the form of the price function. We make this 
dependence explicit when needed. By (2) and (4), we see that aggregate demand for the risky 
asset by all individuals of type r depends on p and the group signal yi(r), and is given by

τ(r)
α′

i(r)yi(r) + βi(r)(p − c) − p

ρ(r)Var(θ |i(r)) , (5)

where recall that τ(r) is the population measure of type r .
We may now define an equilibrium price function. To this end, observe that while an agent’s 

demand will depend on her risk-aversion ρ(r), the coefficients αi(r) and βi(r) estimated from 
Bayes’ Rule will be independent of her risk type. Writing these as αi and βi , using the expression 
(5), aggregating across types, and adding on noise trade, the market-clearing condition becomes

n∑
i=1

α′
iyi + (βi − 1)p − βic

�i Var(θ |i) + u = X, (6)

where we recall that X is the supply of the asset, and where we define, for each i = 1, . . . , n,

�i = 1∑
{r|i(r)=i}

τ(r)
ρ(r)

> 0.

This implicitly defines an equilibrium price function. By matching terms from the price function 
(3) and the market-clearing condition (6), we see that

γ =
[

n∑
i=1

1 − βi

�i Var(θ |i)

]−1

, (7)

c = −
[

n∑
i=1

1

�i Var(θ |i)

]−1

X, and (8)

π i = γ

�i Var(θ |i)αi for i = 1, . . . , n, (9)

where Var(θ |i) will be given an explicit expression in (12) below.
We make six remarks on our price function. First, given a continuum of iid idiosyncratic sig-

nals within each information group, linearity guarantees that only aggregate group signals matter. 
So only {y1, . . . , yn} enters the price function, and all idiosyncratic signal realizations disappear. 
Second, the matching equation (9) is unique when the variance-covariance matrix of the ag-
gregate signal y is positive definite, but not otherwise. Because we do not impose this positive 
definiteness in our model, the matching equation (9) is only one of several potential matchings. 
Third, the coefficient on each signal depends in an intimate way on the overall stochastic struc-
ture of signals, asset supply, information group sizes, and the distribution of risk attitudes as also 
the distribution of the fundamental. Fourth, the prior mean of θ is taken to be zero and so does 
not explicitly enter the price function, but of course the prior will cast its influence, so in general, ∑n

k=1
∑m

s=1 πks �= 1 (for an explicit computation in a special case, see (23)). Fifth, even if we 
were to reorder signals (without loss of generality) so that each is positively correlated with the 
fundamental, every weight πij cannot be guaranteed to be nonnegative, given the generality of 
correlation patterns across signals. Finally, γ �= 0 is jointly implied by equilibrium and our defi-
nition of a price function as a non-trivial object, for if it were zero, the entire vector (π, γ ) would 
be zero, by (9). That said, and in contrast to the special case of independent signals, a non-trivial 
argument is needed to show that γ must be positive.
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3.2. Existence and regularity of linear equilibrium

Consider trader j in information group i. By the independence of idiosyncratic noise (As-
sumption 1), Var(zi (j)) = Var(yi ) + Var(εi (j)). In addition, because all idiosyncratic noise 
within group i has the same distribution, Var(zi (j)) depends only on the identity of the informa-
tion group i, but not on agent j ’s risk-aversion. Therefore, we drop j and simply write Var(zi )

instead of Var(zi (j)). It follows from normality that for every i, the triple (θ, z′
i , p)′ has mean 

zero and positive definite variance-covariance matrix11⎛
⎝ Var(θ) Cov(θ,yi )

′ Cov(π , θ)

Cov(θ,yi ) Var(zi ) Cov(π ,yi )

Cov(π , θ) Cov(π ,yi )
′ Var(π) + γ 2 Var(u)

⎞
⎠ =:

(
Var(θ) . . .

... i

)
,

where i is positive definite, and the inverse −1
i exists and equals12

⎛
⎜⎜⎝

[
Var(zi ) − Cov(π ,yi ) Cov(π,yi )

′
Var(π)+γ 2 Var(u)

]−1 − Var−1(zi ) Cov(π,yi )

Var(π)+γ 2 Var(u)−Cov(π,yi )
′ Var−1(zi ) Cov(π ,yi )

− Cov(π,yi )
′

Var(π)+γ 2 Var(u)

[
Var(zi ) − Cov(π,yi ) Cov(π ,yi )

′
Var(p)

]−1
1

Var(π)+γ 2 Var(u)−Cov(π,yi )
′ Var−1(zi ) Cov(π,yi )

⎞
⎟⎟⎠

So by the projection theorem for normal random variables, the conditional mean of θ equals

E(θ |zi (j),p) =E(θ |zi (j),p − c) = (
Cov(θ,yi )

′,Cov(π, θ)
)
−1

i (z′
i (j),p − c)′

≡ α′
izi (j) + βi(p − c),

where

αi =
[

Var(zi ) − Cov(π ,yi )Cov(π ,yi )
′

Var(π) + γ 2 Var(u)

]−1 [
Cov(θ,yi ) − Cov(π , θ)

Var(π) + γ 2 Var(u)
Cov(π ,yi )

]
,

(10)

βi = Cov(π , θ) − Cov(θ,yi )
′ Var−1(zi )Cov(π ,yi )

Var(π) + γ 2 Var(u) − Cov(π ,yi )
′ Var−1(zi )Cov(π ,yi )

, (11)

and the conditional variance of θ is given by

Var(θ |i) = Var(θ) − (
Cov(θ,yi )

′,Cov(π , θ)
)
−1

i

(
Cov(θ,yi )

′,Cov(π , θ)
)′

= Var(θ) − [α′
i Cov(θ,yi ) + βi Cov(π , θ)], (12)

noticing, as mentioned before, that neither the signal nor price realization affects its value.

11 If the variance-covariance matrix of (θ, z′
i
, p)′ is not positive definite for some i, then there exists a nonzero vec-

tor (d1, d′
2, d3) such that d1θ + d′

2zi + d3p = 0. Because γ �= 0 and u is independent of other random variables, it 
must hold that d3 = 0. Also observe that d1 �= 0 by the assumed positive definiteness of yi and idiosyncratic noise. So 
θ = −d′

2zi /d1. That is, θ can be expressed as a linear combination of zi . But then Var(θ |y1, . . . , yn) ≤ Var(θ |yi ) ≤
Var(θ |zi ) = 0, which contradicts Assumption 1.

12 Let A =
(

A11 A12
A21 A22

)
be a nonsingular matrix with det(A11) �= 0 and det(A22) �= 0. Then

A−1 =
(

[A11 − A12A−1
22 A21]−1 −A−1

11 A12[A22 − A21A−1
11 A12]−1

−A−1
22 A21[A11 − A12A−1

22 A21]−1 [A22 − A21A−1
11 A12]−1

)
.
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Now we can make further progress on the coefficients recorded in (7)–(9). First, substitute 
(10) into (9) to get

π i = γ

[
Var(zi ) − Cov(π,yi ) Cov(π,yi )

′
Var(π)+γ 2 Var(u)

]−1 [
Cov(θ,yi ) − Cov(π,θ)

Var(π)+γ 2 Var(u)
Cov(π ,yi )

]
�i Var(θ |i) .

(13)

Our goal is to find solutions for π and γ which can then be inserted into (10) and (11) to generate 
the coefficients {αi , βi}. To achieve this, it will be convenient to study the ratio of π to γ .13

Recalling that γ �= 0, define Qi = π i/γ for i = 1, . . . , n, and Q = (Q′
1, . . . , Q

′
n)

′. Using (13), 
we obtain the following equations involving only the variables {Qi}, but not γ :

Qi = f i (Q) ≡
[
Var(zi ) − Cov(Q,yi ) Cov(Q,yi )

′
Var(Q)+Var(u)

]−1 [
Cov(θ,yi ) − Cov(Q,θ)

Var(Q)+Var(u)
Cov(Q,yi )

]
�i VarQ(θ |i)

(14)

for i = 1, . . . , n. Notice how, in this fixed point mapping, we subscript the conditional variance by 
Q, to emphasize that it does change with the price function, which is informationally equivalent 
to 

∑n
k=1 Q′

kyk + u because γ �= 0. Our existence theorem relies on a solution to (14).

Proposition 1. The system of equations (14) has a solution.

While postponing the formal details, we make some remarks on the existence argument. Be-
cause of the generality of our signal structure, we cannot guarantee that each Qi is nonnegative 
(we return to this problem later). Consequently, the arguments in Hellwig (1980) cannot be ap-
plied here. A specific problem arises precisely in the Hellwig case with a finite number of traders, 
which corresponds in our model to the case of no idiosyncratic noise. When there is no idiosyn-
cratic noise, we cannot guarantee the uniform boundedness of the mapping f ≡ (f 1, . . . , f n)

with respect to all Q ∈ Rnm. The proof therefore proceeds differently, by first constructing a 
sequence of uniformly bounded mappings over the domain, obtaining a fixed point (using Brouw-
er’s theorem) for each such mapping, and then taking the limit of the resulting sequence of fixed 
points to obtain a fixed point of the original mapping f . In contrast, when there is idiosyncratic 
noise, the uniform boundedness of the mapping f over all Q ∈ Rnm can be established, permit-
ting a direct application of Brouwer’s fixed-point theorem to obtain a solution to the system (14).

Given the existence of a Q satisfying (14), and suppressing the subscript Q from the condi-
tional variance, we can quickly solve for the coefficients of the accompanying price function. By 
virtue of (7) and (11), we have

1

γ
=

n∑
i=1

1

�i Var(θ |i)

−
n∑

i=1

1

�i Var(θ |i)
Cov(π , θ) − Cov(θ,yi )

′ Var−1(zi )Cov(π ,yi )

Var(π) + γ 2 Var(u) − Cov(π ,yi )
′ Var−1(zi )Cov(π ,yi )

=
n∑

i=1

1

�i Var(θ |i)

13 We borrow this technique from Hellwig (1980).
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− 1

γ

n∑
i=1

1

�i Var(θ |i)
Cov(Q, θ) − Cov(θ,yi )

′ Var−1(zi )Cov(Q,yi )

Var(Q) + Var(u) − Cov(Q,yi )
′ Var−1(zi )Cov(Q,yi )

.

Rearranging the terms in this equation, we see that

γ =
1 + ∑n

i=1
Cov(Q,θ)−Cov(θ,yi )

′ Var−1(zi ) Cov(Q,yi )

�i Var(θ |i)[Var(Q)+Var(u)−Cov(Q,yi )
′ Var−1(zi ) Cov(Q,yi )]∑n

i=1
1

�i Var(θ |i)
. (15)

Observe that γ is finite for any Q ∈ Rnm because the denominator of the expression (15)
is always strictly positive. Provisionally assume that γ is non-zero as well; then we can quickly 
establish the existence of linear equilibrium. With γ given by (15), we obtain a solution π to (13)
using the relationship π = γQ. Substituting the solution (π, γ ) into (10) and (11) leads to αi

and βi . We then obtain Var(θ |i) via (12). Finally, the value of c comes from (8). Taken together, 
we have a linear equilibrium.

So there is just one remaining step, which is to assure ourselves that the premise from which 
we started — γ �= 0 — can be respected in this solution. In Hellwig (1980), there is no id-
iosyncratic noise and the aggregate signal for trader/group i takes the single-dimensional form 
yi = θ + εi . For this special case, Lemma 3.1 in Hellwig (1980) shows that the system of equa-
tions (14) has a strictly positive solution. This implies that γ in (15) is also positive.14 This 
regularity result is also true — but far from immediate — in our setting. For instance, Q will not 
generally be positive, so the argument just made must be discarded.

Proposition 2. For any solution Q to (14), we have γ > 0.

Propositions 1 and 2 immediately yield:

Proposition 3. There exists a linear equilibrium, and every such equilibrium is regular.

Ozsoylev and Walden 2011, p. 2260, underline the non-triviality of Propositions 1 and 2: “We 
note that, in contrast to the analysis in [Hellwig, 1980], the existence of a linear NREE [noisy 
rational expectations equilibrium] for a finite number of agents is not guaranteed here, because in 
our setup agents, who are each other’s neighbors or who have common neighbors, receive signals 
with correlated error terms.” However, our Propositions show that even though the error terms 
of private signals in a finite-agent economy are correlated with each other and the dimension of 
signals is arbitrary, there always exists a linear equilibrium and each linear equilibrium is regular.

3.3. Uniqueness of linear equilibrium

We now turn to a discussion of uniqueness of our equilibrium, within the class of all linear 
equilibria.15 We therefore say that a linear equilibrium is unique if all linear equilibrium prices 
equal each other almost surely. Specifically, if p1 and p2 are two linear equilibrium price func-
tions defined on (y′, u)′, then p1 = p2 almost surely.

14 Refer to equation (8b) in Hellwig (1980).
15 We do not address the more demanding question of uniqueness in the class of all potential equilibria. For instance, in 
the context of the simpler model of Grossman (1976), DeMarzo and Skiadas (1998) show that the linear equilibrium in 
is unique in the class of all possible equilibria, linear or not.
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Observe that this sort of “outcome-uniqueness” is different from the assertion that there is 
a single linear equilibrium price function. The latter cannot be obtained in situations in which 
the signal y fails to have a positive definite variance-covariance matrix, which is something we 
want to allow for; see earlier discussion. Specifically, consider any maximal linearly independent 
subset of {yij , i = 1, . . . , n, j = 1, . . . , m}, denoted by ȳ. Then Var(ȳ) is positive definite, and 
every yij not in ȳ can be expressed as a linear combination of ȳ. So any linear equilibrium 
p = π ′y +γ u + c can be equivalently rewritten as an equilibrium of the form p = π̄ ′ȳ +γ u + c. 
It is “outcome-uniqueness” that we are interested in, and that is quite generally satisfied in our 
model, provided that traders are sufficiently risk-averse.

Proposition 4. There exists ρ̂ < ∞ such that if ρ(τ) ≥ ρ̂ for every trader type τ , the resulting 
linear equilibrium is unique.

It should be pointed out that Proposition 4 is different from uniqueness arguments made in the 
absence of noise trade. Given the information aggregation result in Proposition 6 that we prove 
below, we already have the asymptotic uniqueness of all equilibria in the limit as noise trade 
vanishes — at least for linear limit equilibria that survive small perturbations in noise trade.16

This is because Proposition 6 shows that every limit point of every sequence of equilibrium 
price functions must serve as a perfect aggregator of information, and so must have the outcome-
uniqueness property described above. (Additionally, a best estimator is fully pinned down when 
the set of signals is full-dimensional.) Nevertheless, Proposition 4 is of separate interest because 
it establishes uniqueness — albeit under some restrictions — away from the full-information 
limit.

4. Information aggregation

4.1. Some aggregation

We begin with the question of whether the equilibrium price aggregates some information, 
even when there is noise. In what follows, we maintain the convention

Cov(θ,yi ) ≥ 0

for every i. This restriction is without any loss of generality, as a signal can always be reordered 
by a sign flip without changing anything of consequence. Next, say that the equilibrium price p
aggregates some information about the fundamental θ if Cov(θ, p) �= 0. We can now state:

Proposition 5. It is always true that Cov(θ, p) ≥ 0. Strict inequality holds — i.e., the equilibrium 
price aggregates some information about θ — if and only if Cov(θ, yi ) �= 0 for some i.

Proposition 5 is intuitive, and it is especially transparent in the Hellwig (1980) setting with the 
special one-dimensional signal and the special independent signal structure yi = θ + εi because 
for this special structure, the solution to (14) is positive and the covariance Cov(θ, yi) is equal to 
the unconditional variance Var(θ) for every signal yi . Proposition 5, combined with the relation-

ship Var(θ |p) = Var(θ) − Cov(θ,p)2

Var(p)
, also tells us that the equilibrium price is informative, i.e., 

16 This observation is directly related to uniqueness arguments in the literature (at least within the class of linear equi-
libria) in the case where there is no noise trade; see, e.g., Grossman (1976) and Nielsen (1996).
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Var(θ |p) < Var(θ), provided that at least one component in all the group signals is correlated 
with the fundamental.

4.2. Full aggregation with vanishing noise

Next, suppose that a “super-agent” can see the entire set of aggregate signals y = (y′
1, . . . , y

′
n)

′, 
and is asked to infer the fundamental value θ . The solution to this problem is standard: choose a 
weighting vector π for the signals that satisfies the condition for perfect information aggregation: 
for every i,

Cov(θ,yi ) = Cov(π ,yi ). (16)

If the vector of signals y is linearly independent, then Var(y) is positive definite and the solution 
to (16) is unique. Let  stand for the variance-covariance matrix of signals y, and Cov(θ, y) for 
the vector of covariances

[Cov(θ,y1)
′, . . . ,Cov(θ,yn)

′]′.
Then the unique solution to (16) must be given by

π = −1 Cov(θ,y). (17)

When the vector of group signals is not linearly independent, as would be the case (for instance) 
when one group is unambiguously more informed than another, then in general there will not be 
a unique solution to the perfect aggregation condition. But it really does not matter, because all 
solutions do an equally good job. A typical solution can be described as follows.

Consider a maximal linearly independent subset of {yij , i = 1, . . . , n, j = 1, . . . , m}, and 
without loss of generality, denote the vector of such a subset by ȳ. That is, the variance-
covariance matrix of ȳ is positive definite, and for every yij which is not in the maximal linearly 
independent subset, the variance-covariance matrix of (ȳ′, yij )

′ fails to have full rank. The signal 
ȳ is informationally equivalent to the aggregate signal y. A solution to (16) could be described 
by an analogue of (17) applied to this linearly independent subset:

π̄ = ̄−1 Cov(θ, ȳ), (18)

where the associated notation using bars should be self-explanatory. Undoubtedly, if we fixed 
another maximally independent subset ŷ, the corresponding weights π̂ would do just as well in 
aggregation, so the specific maximally independent subset does not matter.

We connect these remarks a bit more formally to a market context. Just for the discussion 
here, we suppose that there is no noise trade (i.e., Var(u) = 0), and no idiosyncratic noise (i.e., 
Var(εi (j)) = 0 for all i and j ). Now consider the price function π̄ ′ȳ + c. We claim that for 
every i,

E(θ |yi , π̄
′ȳ) =E(θ |π̄ ′ȳ) and Var(θ |yi , π̄

′ȳ) = Var(θ |π̄ ′ȳ), (19)

which formally captures the idea that nothing of informational value can be added once the 
weights in (18) have been applied to predict the fundamental. We only show the first equality 
in (19), because the second will follow immediately from the first by invoking the Law of Total 
Variance: Var(θ) = Var(E(θ |·)) + E(Var(θ |·)). That equality is obvious when Cov(θ, ȳ) = 0. 
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When Cov(θ, ȳ) �= 0, we have π̄ �= 0 because ̄−1 is a positive definite matrix. By the projection 
theorem for normal random variables, we have

E(θ |π̄ ′ȳ) = Cov(π̄ ′ȳ, θ)

Var(π̄ ′ȳ)
π̄ ′ȳ.

Furthermore, it follows from (18) that

Cov(π̄ ′ȳ, ȳ) = Cov(θ, ȳ), (20)

which is just (16) for the maximally independent set. Multiplying by π̄ on both sides, we obtain:

Var(π̄ ′ȳ) = Cov(π̄ ′ȳ, θ). (21)

Now suppose that for every i, π̄ ′ȳ cannot be expressed as a linear combination of yi . (For the 
opposite case, see this footnote.17) Then it follows from Lemma 3 in the Appendix, identifying 
π̄ ′ȳ with μ′y, that for any i, Var(yi ) − Cov(π̄ ′ȳ,yi ) Cov(π̄ ′ȳ,yi )

′
Var(π̄ ′ȳ)

is positive definite and Var(π̄ ′ȳ) −
Cov(π̄ ′ȳ, yi )

′ Var−1(yi ) Cov(π̄ ′ȳ, yi ) > 0.
By setting γ 2 Var(u) = 0, zi = yi and p = π̄ ′ȳ + c, equations (20) and (21) imply that the 

coefficient αi in (10) equals zero, and βi in (11) equals one. Therefore (19) holds for every i.18

In summary, under the perfect aggregation condition, all information in y is combined opti-
mally in π to predict θ . Adding any signal to it in a way that matters is not only redundant, but 
reduces predictive ability for a market participant.

The discussion is obviously related to that in Grossman (1976). When each of a finite number 
of traders obtains a conditionally independent signal (yi = θ + εi ), Grossman showed that in the 
absence of noise trade, the equilibrium price perfectly aggregates all traders’ private information. 
A trader who only observes the price can achieve the same expected utility as one acquires 
an additional private signal, and in fact any use of the private signal is payoff-reducing. But, 
of course, as is well known, Grossman’s analysis only introduces the paradox of information 
aggregation, and does not solve it. Consult Grossman (1976), Grossman and Stiglitz (1980) and 
Hellwig (1980) for more discussion on the Grossman-Stiglitz paradox, and for Hellwig’s solution 
to it, that we now proceed to extend and generalize.

With noise trade, it now makes sense to rely on private information, because the informa-
tiveness of the price is now clouded by stochastic shocks to demand. That reliance must fade 
as the noise trade approaches zero. The question we now ask is posed in an entirely general 
setting: does that reliance fade “slowly enough” so that private information seeps into the price 

17 If there is only one nonzero vector, say κ1 �= 0, such that π̄ ′ȳ = κ ′
1y1, (20) implies that Cov(κ ′

1y1, y1) = Cov(θ, y1)

and consequently, κ = Var−1(y1) Cov(θ, y1). Hence

E(θ |y1, π̄ ′ȳ) =E(θ |y1) = κ ′y1 =E(θ |κ ′
1y1) =E(θ |π̄ ′ȳ),

where the first equality follows from the informational equivalence between {y1, π̄ ′ȳ} and y1, and the second and third 
equalities follow from the projection theorem for normal random variables. Then (19) holds for i = 1. We next show that 
it also holds for 2 ≤ i ≤ n. Consider some 2 ≤ i ≤ n. If π̄ ′ȳ cannot be expressed as a linear combination of yi , then 
we can show that (19) holds for this i by applying arguments similar to those in the main text. If π̄ ′ȳ = κ ′

i
yi for some 

nonzero κi , then (19) also holds for this i by using arguments similar to those above in this footnote.
18 Indeed, we can check that p̄ = π̄ ′ȳ −X/ 

∑n
i=1

1
�i Var(θ |π̄ ′ȳ)

is an equilibrium price in the sense of Grossman (1976). 

Optimal demands clear the market, given that 
∑n

i=1
E(θ |yi ,π̄

′ȳ)−p̄

�i Var(θ |yi ,π̄
′ȳ)

= X, and given that the mean and variance of the 
noise demand equal zero.
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system, allowing for full information aggregation as noise converges to zero? Our answer is in 
the affirmative:

Proposition 6. Along any sequence of equilibria indexed by the variance of noise Vart (u) con-
verging to zero, any corresponding sequence of equilibrium price functions pt = π ′

ty + γtu + ct

must have the following properties:
(i) π t is bounded in t and every limit point π of {π t } must satisfy perfect information aggre-

gation:

Cov(θ,yi ) = Cov(π ,yi ), i = 1, . . . , n, (22)

and in particular, there is a unique limit (i.e., π t → −1Cov(θ, y)) when Var(y) is positive 
definite.

(ii) γ 2
t Vart (u) → 0 and ct → Cov(π,θ)−Var(θ)∑n

k=1 1/�k
X whenever π t → π along some subsequence 

of t .

The above proposition has two parts. The central assertion is Part (i). In general, an equilib-
rium price function will not aggregate information efficiently. Quite apart from the presence of 
noise trade, different signals are observed by groups that vary both in their sizes and in their 
within-group distribution of risk attitudes. Because the volume of group-specific trade also goes 
into determining the equilibrium price function, and because sizes and risk attitudes affect those 
volumes, the equilibrium price function will incorporate not just pure information but also group 
sizes and the full distribution of attitudes to risk. Finally, there are arbitrary correlations across 
possibly multidimensional signals. From this perspective, it is of interest that as the impact of 
noise trade vanishes, all these additional effects on the price function endogenously vanish, leav-
ing only the efficient aggregation of information.

Could there be several limit points? In general, the answer is yes: it would depend on how 
much “slack” there is in the signal structure. But even then, as already discussed, each limit point 
would exhibit the perfect aggregation property, so in this sense, nothing of substance is lost. As 
a special case, if the set of group signals has full dimensionality, then we can assert that every 
sequence of equilibrium price functions must indeed converge to a well-defined, unique limit 
as noise trade vanishes. We remark that these considerations — many limit points all satisfying 
perfect aggregation, or just one — are orthogonal to the question of whether equilibria are unique 
for each parametric configuration: the results apply regardless.

Part (ii) states two ancillary observations. First, as the variance of the noise trade goes to zero, 
its overall impact on prices goes to zero as well. This is intuitive. Second, when the supply of the 
asset X is non-zero, the intercept term c of the price function does indeed retain the influence 
of group sizes and attitudes to risk, as captured by the �i ’s. But confined as these influences are 
to the intercept term, they do not impede efficient information aggregation. The main point is 
that all group-level heterogeneity must completely vanish from the coefficients on y, as already 
described in Part (i).

The above proposition significantly extends Proposition 4.3 in Hellwig (1980) to our fully 
general signal structure. Noise trade is bad for information aggregation, but that is precisely 
what allows the information to leak into the price in the first place, because traders see value in 
using their private signals in the presence of noise. As noise trade vanishes, the reliance on own 
signals vanishes as well, but the speed of that vanishing must be slow enough so that in the limit, 
full information aggregation is achieved.
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5. A remark on the coefficients of the equilibrium price function

In this section, we remark on the weights π that aggregate the signals in the equilibrium 
price function. We consider only the special case of one-dimensional signals for each informa-
tion group. For simplicity we also assume that there is no idiosyncratic noise (Var(εi(j)) = 0). 
When aggregate signals take the special form of yi = θ + εi (where {εi} are iid), Lemma 3.1 in 
Hellwig (1980) shows that Qi > 0 (equivalently, πi > 0) for any i. Even with a general signal 
structure, when there is no noise trade, there is a linear correspondence between the weights 
π and the correlation Cov(θ, y), as illustrated by (17). Indeed, when both these two cases ap-
ply, Cov(yi, yj ) = Var(θ) for any i �= j and Var(yi) = Var(θ) + Var(εi). Consequently, we can 
explicitly obtain the weights π as follows:

πi = Var(θ)/Var(εi)

1 + ∑n
k=1 Var(θ)/Var(εk)

, i = 1, . . . , n. (23)

This is a generalization of Theorem 1 in Grossman (1976).19

Beyond these cases, and once faced with the generality of the correlation pattern that we allow 
for, it is difficult to sign π , even after imposing the convention that Cov(θ, y) ≥ 0. Consider the 
following three observations.

1: Cov(θ, yi) > 0 for all i does not imply that Qi �= 0 for all i. As an example, suppose 
n = 2 and Cov(θ, yi) > 0 for i = 1, 2, but that Cov(y1, y2) �= 0. Then (Q1, Q2) with Q1 = 0 is a 
solution to (14) if and only if the following two equalities hold:

Cov(θ, y1)[Q2
2 Var(y2) + Var(u)] = Cov(θ, y2)Q

2
2 Cov(y1, y2),

Q2 = Cov(θ, y2)

�2[Var(θ)Var(y2) − Cov(θ, y2)2] ,
which may well be true for some parameters.

2: Cov(θ, yi) = 0 for some i does not imply that Qi = 0. Again, let n = 2. Suppose that 
Cov(θ, y1) = 0, Cov(θ, y2) > 0 and Cov(y1, y2) > 0. It is easy to show by contradiction that 
Q1 �= 0. Otherwise, Q2 > 0 by Proposition 5 and

Q1 = − Q2
2 Cov(θ, y2)Cov(y1, y2)

�1 Var(θ |y1,
∑2

k=1 Qkyk + u)[Var(y1)(Var(Q) + Var(u)) − Cov(Q, y1)2] ,

which is a contradiction.
3: It is entirely possible for Qi0 < 0 for some i0, even under the assumption that Cov(θ, yi) ≥

0 for all i. Consider the example in the preceding observation 2. We can see that (Q1, Q2)

satisfies the equation

Q1 = − Q2 Cov(θ, y2)[Q1 Var(y1) + Q2 Cov(y1, y2)]
�1 Var(θ |y1,

∑2
k=1 Qkyk + u)[Var(y1)(Var(Q) + Var(u)) − Cov(Q, y1)2] .

Proposition 5 and the previous equation imply that Q1 �= 0 and Q2 �= 0. If Q2 < 0, there is 
nothing to prove, and if Q2 > 0, we can show by contradiction that Q1 < 0.

Our last proposition signs Qi (and therefore πi ) for some other special cases of possible 
interest.

19 It also validates the observation that generally 
∑

k πk is not equal to 1, given that some weight is always assigned to 
the prior on the fundamental.
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Proposition 7. Suppose that Cov(θ, yk) > 0 for at least one k. Then:
(i) If yi is uncorrelated with yj for every pair (i, j) with j �= i, then Qi > 0 if Cov(θ, yi) > 0, 

and Qi = 0 if Cov(θ, yi) = 0.
(ii) Suppose that Cov(θ, yi0) = 0 for some i0, and that Cov(yi0, yk) > 0 for every k. Then 

there is at least one index j with Qj < 0.
(iii) It is not possible that Qi ≤ 0 for all i.
(iv) There exists a threshold for the variance of noise trade, v, such that if Var(u) ≥ v, then 

Qi > 0 for every i such that Cov(θ, yi) > 0.

The Proposition makes some progress in signing the coefficients in special cases, or by plac-
ing some overall restrictions, as in parts (ii) and (iii). But even the overall nihilism expressed 
in this section can be given a rich interpretation in applications. With many signals, some of 
which are not observed by an individual trader, there is scope for interesting inference in specific 
situations.

Suppose, for instance, that we are interested in the value of a pharmaceutical company, and 
there are just two information groups, so that n = 2. A representative trader in group 1 knows 
about the number of clinical trials are being performed by the pharmaceutical, but does not know 
the results of those trials. A trader in group 2 knows about the number of successes in these trials, 
but does not know the number of trials. Now, controlling for the number of successes, a larger 
number of trials is bad news, because it suggests a lower percentage of successes. Therefore 
the number of trials will enter negatively into the price function, when the number of successes 
exists as a separate signal for others. (In contrast, if the number of successes is entirely private, 
the number of trials could have entered positively, but that is another setting.)

Here is a concrete numerical example, though the reader is asked to forgive the replace-
ment of positive integers by lognormal signals: n = 2, X = 5, �1 = �2 = 1, y1 = log(trials), 
y2 = log(successes), Var(y1) = 12, Var(θ) = Var(y2) = 10, Cov(θ, y1) = 1, Cov(θ, y2) = 8, 
Cov(y1, y2) = 7, and Var(u) = 2. The fsolve function in MATLAB yields (Q1, Q2) =
(−0.001, 0.2221) for the system in (14) and a solution γ = 0.4858 in (15). Therefore 
(π1, π2) = γ (Q1, Q2) = (−0.0005, 0.1079), and the corresponding linear equilibrium price is 
p = −0.0005y1 + 0.1079y2 + 0.4858u − 13.2059.

Now consider what happens when a trader in group 1 sees a higher value of her signal (more 
trials), but observes the same market price. She can then infer that trader 2 must have received a 
really positive signal regarding the number of interim successes. (Note that we show in Propo-
sition 5 that it is impossible that every sign is non-positive.) She understands that trader 2 is 
therefore taking a larger position in the asset. But of course, she understands that trader 2 — 
who is making similar inferences — will also know that part of the reason for her good signals 
must be that the company is conducting more trials, so that trader 2 will be more cautious about 
the success rate. These two forces temper the reaction of each side of the market. Knowing the 
signs of the price coefficients is indispensable for making these arguments, and can help traders 
to understand well the positions of other traders.

6. Bibliographical notes

Our paper contributes to the extensive literature on equilibrium in financial markets with ra-
tional expectations. The literature can be divided into two subareas — one set in the classical 
domain of competitive price-taking behavior, and another that approaches the problem via the-
ories of imperfect competition and strategic interaction; see Vives (2008) for a comprehensive 
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account. Our paper sits squarely in the former area. We discuss existence first, then information 
aggregation.

The competitive setting emanates from the pioneering contributions of Grossman (1976), 
Hellwig (1980) and Grossman and Stiglitz (1980). Pálvölgyi and Venter (2015a) show that the 
linear equilibrium in Grossman and Stiglitz (1980) is unique in the class of all continuous price 
functions.20 We restrict ourselves to linear equilibria throughout. Barlevy and Veronesi (2000)
extend Grossman and Stiglitz (1980) in a different direction, assuming that the fundamental is 
binomial and investors are risk-neutral, in place of the classical assumption of normality and 
exponential utility. García and Urošević (2013) analyze the effects of the level of aggregate sup-
ply of the risky asset on the acquisition, revelation, and aggregation of private information for a 
variant of Hellwig (1980) to allow for both the presence of informed and uninformed traders.

These contributions all presume that traders’ private signals are expressible as the sum of 
the fundamental and idiosyncratic noise. As already mentioned, we depart from this structure. In 
this sense, our model is related to Breon-Drish (2015), which essentially analyzes the finite-agent 
model of Hellwig (1980), but with an extension to more general signal structures of the exponen-
tial family, which includes normal distributions.21 For tractability, this paper restricts the main 
analysis to the case of two agents (one informed trader and one uninformed trader) and binomial 
distributions. While Breon-Drish (2015) also discusses equilibrium existence for the multi-agent 
model, their existence results all assume that some system of equations has a solution (refer to 
their Proposition 7 and Corollary 2 therein), without providing specific conditions that ensure the 
existence of equilibrium. In contrast, we restrict ourselves to the normal case, but establish the 
existence and regularity of linear equilibrium.22

Ozsoylev (2006) considers a generalized REE model in which traders can observe their neigh-
bors’ actions (their demands for the risky asset) over a social network, and can glean information 
from those actions. Ozsoylev proposes a generalized concept of REE which accommodates this 
interaction, and analyzes equilibrium existence for some special networks (cycles, trees), ow-
ing to difficulties when dealing with more general network structures. In contrast, agents in our 
model observe not the actions of other agents, but their signals. So conceptually, we do not (and 
do not need to) extend the REE definition. However, because we establish our main results for 
any correlation structure, the implication is that the analysis here can handle arbitrary networks.

Turning now to information aggregation, our paper is related to a vast literature on the in-
formational role of prices in competitive markets. In Grossman (1976), a price function that 
aggregates all information is an equilibrium, but there is no satisfactory explanation for how the 
information gets into the system. Given the price function, traders have no incentive to use their 
private information. One interpretation of Hellwig (1980) is that noise trade acts as a device to re-
solve the paradox in Grossman (1976),23 one that we adopt and significantly extend in our setting.

20 The same result is generally not true for even larger spaces of functions: for idiosyncratic information structures the 
authors also prove that there exist multiple discontinuous equilibria.
21 Bernhardt and Miao (2004) also consider a model — different from ours — with a general signal structure. Although 
this work characterizes necessary and sufficient conditions for linear equilibrium, it does not provide general results on 
equilibrium existence.
22 There is also a literature that studies the existence, multiplicity and uniqueness of equilibrium for multi-asset models; 
see, for instance, Pálvölgyi and Venter (2015b), Chabakauri et al. (2017) and Carpio and Guo (2018).
23 Vives (2014) attempts a resolution of the Grossman-Stiglitz paradox by considering heterogeneous valuations for 
the risky asset, and shows that the incentives to acquire information could be preserved without resorting to noise trade 
— after all, the equilibrium price function caters to some average of all the valuations, leaving each trader with some 
incentive to use her own information. See also Rahi and Zigrand (2018), where this happens to a partial degree.
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We end by briefly mentioning the imperfect competition setting. Now prices naturally en-
code information, as they are typically set to clear the market “after” traders make their strategic 
choices. So there is no potential informational paradox here as in the competitive setting, but it is 
still of interest to learn when perfect aggregation is possible.24 The standard approach is to pass 
to the limit as the number of traders becomes large.25 A continuous auction consisting of a single 
insider, noise traders and market makers is studied in Kyle (1985), in which all private informa-
tion is incorporated into prices. Based on the single-period model of Kyle (1985), Lambert et al. 
(2018) study the trading behavior and the properties of prices in an general signal setting and 
obtain an information aggregation result. Our paper complements Lambert et al. (2018), in that 
they work with a similarly general signal structure but in the imperfectly competitive setting; in 
contrast, we work with a fully competitive model.

7. Concluding summary

We revisit Hellwig (1980) by studying a financial market with correlated information received 
by traders. Our traders belong to finitely many “information groups,” and there is an aggregate 
signal for each such group. Each trader observes an idiosyncratic signal — generated from that 
aggregate signal — about the fundamental, and acts on the basis of that signal and the market 
price of the traded security. Because signals are multidimensional and the information structure 
permits general correlations, several existing models serve as special cases. The existence and 
regularity of linear equilibrium are established, the former through a novel method involving 
sequences of fixed points. We show that the equilibrium price function serves well as an infor-
mation aggregator of diverse and decentralized information in the market, as the variance of the 
noise demand converges to zero.

Appendix A

In this appendix, we present all proofs. We begin with three useful preliminary steps.

Lemma 1. For each i, there is ε ≥ 0 such that for any price of the form (3),

0 < Var(θ |y1, . . . ,yn) ≤ Var(θ |i) ≤ Var(θ) − ε,

with ε > 0 when Cov(θ, yi ) �= 0.

Proof. The first inequality is stated in Assumption 1. For the second inequality, recall that 
Var(θ |i) is shorthand for Var(θ |zi , p), and now observe that a price function of the form (3), 
plus a private signal, has no more information than y. The last inequality states that the un-
conditional variance of θ must weakly exceed any of the conditional variances. That inequality 

24 It is still possible to write down models of imperfect competition where information is not “forced” into the price. 
See, e.g., Kyle (1989), where demand schedules as functions of the price are announced.
25 On the strategic foundations of information aggregation and revelation when the number of traders/bidders (and 
objects) becomes large, see, e.g., Wilson (1977), Milgrom (1981), Pesendorfer and Swinkels (1997), Kremer (2002), 
Reny and Perry (2006) and Kovalenkov and Vives (2014). For a double auction in which the average of the correlation of 
each bidder’s value with other bidders’ values is a constant, Rostek and Weretka (2012) show that the equilibrium price is 
privately revealing (one trader’s private signal together with the price contains all information) if and only if correlations 
of values coincide across all bidders.
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is necessarily strict, and uniformly so regardless of the price function, if any of the condition-
ing variables is informative about θ , as it will be when Cov(θ, zi ) �= 0, or equivalently, when 
Cov(θ, yi ) �= 0. �
Lemma 2. For any vector μ = (μ′

1, ..., μ
′
n)

′ ∈ Rnm, define �i(μ) ≡ Cov(θ, yi ) Var(μ) −
Cov(μ, θ)Cov(μ, yi ). Then 

∑n
i=1 μ′

i�i(μ) = 0.

Proof. Combine 
∑n

i=1 μ′
i Cov(θ, yi ) = Cov(μ, θ) and 

∑n
i=1 μ′

i Cov(μ, yi ) = Var(μ). �
Lemma 3. Let μ = (μ′

1, ..., μ
′
n)

′ ∈ Rnm with μ′y �= 0. Then the following hold:

(i) For any i, the matrix Var(yi ) − Cov(μ,yi )Cov(μ,yi )
′

Var(μ)
is positive semi-definite, and is addi-

tionally positive definite if μ′y cannot be expressed as a linear combination of yi ;
(ii) For any i, Var(μ) − Cov(μ, yi )

′Var−1(zi )Cov(μ, yi ) ≥ 0, and the inequality is strict if 
μ′y cannot be expressed as a linear combination of yi .

26

Proof. (i) Observe that for any nonzero column vector d ∈Rm,

d ′[Var(yi ) − Cov(μ,yi )Cov(μ,yi )
′

Var(μ)

]
d = Var(d ′yi ) − Cov(μ,d ′yi )

2

Var(μ)

≥ Var(d ′yi ) − Cov(μ,d ′yi )
2

Var(μ)
≥ 0,

where the second inequality follows from the Cauchy-Schwarz inequality. When μ′y cannot be 
expressed as a linear combination of yi , the second inequality is clearly strict: for any column 
vector d ∈Rm, μ′y cannot be perfectly correlated with d′yi .

(ii) Let s = (s1, . . . , sm)′ = Var− 1
2 (yi )yi . Simple computation shows that s ∼ N(0, Im). Ob-

serve that 
∑n

k=1 μ′
kyk can be linearly expressed as

n∑
k=1

μ′
kyk =

m∑
i=1

Cov
( n∑

k=1

μ′
kyk, si

)
si + sm+1,

where sm+1 ≡ ∑n
k=1 μ′

kyk − ∑m
i=1 Cov

(∑
k μ′

kyk, si
)
si is independent of {s1, . . . , sm}. There-

fore, noting that Var−1(zi ) 	 Var−1(yi ),
27

Cov(μ,yi )
′ Var−1(zi )Cov(μ,yi ) ≤ Cov(μ,yi )

′ Var−1(yi )Cov(μ,yi )

= Cov(μ, s)′ Cov(μ, s) =
m∑

i=1

Cov
( n∑

k=1

μ′
kyk, si

)2

≤
m∑

i=1

Cov
( n∑

k=1

μ′
kyk, si

)2 + Var(sm+1) = Var(μ).

(A.1)

26 The two inequalities in Lemma 3 (though not in strict form as stated here) have been proved in Tripathi (1999).
27 Because Var(zi )[Var−1(yi ) − Var−1(zi )] Var(zi ) = Var(εi (j)) + Var(εi (j)) Var−1(yi ) Var(εi (j)) is positive 
semi-definite, Var−1(zi ) 	 Var−1(yi ), with “≺” holding when there is idiosyncratic noise.
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When μ′y cannot be expressed as a linear combination of yi , it is easy to see that sm+1 �= 0, and 
(A.1) holds with strict inequality. �
Proof of Proposition 1. For each i = 1, . . . , n and for any δ > 0, define

f iδ(Q) =
[
Var(zi ) + δIm − Cov(Q,yi ) Cov(Q,yi )

′
Var(Q)+Var(u)

]−1 [
Cov(θ,yi ) − Cov(Q,θ)

Var(Q)+Var(u)
Cov(Q,yi )

]
�i VarQ(θ |i) ,

(A.2)

where Im is the identity in Rm. When δ = 0, the system (A.2) coincides with (14). By Lemma 3
(i) and the fact that Var(yi ) 	 Var(zi ), we see that for any Q ∈Rnm,

δIm 	 Var(zi ) + δIm − Cov(Q,yi )Cov(Q,yi )
′

Var(Q) + Var(u)
, (A.3)

along with

|Cov(Q, θ)| ≤ √
Var(Q)Var(θ) and |Cov(Q,yi )| ≤

√√√√mVar(Q)

m∑
j=1

Var(yij ). (A.4)

Invoking Lemma 1 and (A.2)–(A.4), we see that

|f iδ(Q)| ≤

∣∣∣∣[Var(zi ) + δIm − Cov(Q,yi ) Cov(Q,yi )
′

Var(Q)+Var(u)

]−1
∣∣∣∣
[
|Cov(θ,yi )| +

Var(Q)
√

m Var(θ)
∑m

j=1 Var(yij )

Var(Q)+Var(u)

]

�i Var(θ |y1, . . . ,yn)

≤
|Cov(θ,yi )| +

√
mVar(θ)

∑m
j=1 Var(yij )

δ�i Var(θ |y1, . . . ,yn)

≤ max
1≤k≤n

|Cov(θ,yk)| +
√

mVar(θ)
∑m

j=1 Var(ykj )

δ�k Var(θ |y1, . . . ,yn)
=: Bδ,

where the second inequality uses the fact that 

∣∣∣∣[Var(zi ) + δIm − Cov(Q,yi ) Cov(Q,yi )
′

Var(Q)+Var(u)

]−1
∣∣∣∣ is 

bounded above by the inverse of the smallest eigenvalue of the related matrix, which in turn is 
no greater than 1/δ, by (A.3). Noting that all components of the mapping f δ ≡ (f 1δ, . . . , f nδ)

described in (A.2) are continuous in Q, it follows from Brouwer’s fixed point theorem that the 
restriction of that mapping to the subdomain [−Bδ, Bδ]nm has a fixed point Qδ .

Next, as δ → 0, we claim that any sequence of fixed points {Qδ}δ>0 is bounded. Evaluating 
(A.2) at each fixed point Qδ , transposing terms, and adding over all components i, we have:

n∑
i=1

Q′
iδ

([
Var(Qδ) + Var(u)

]
(Var(zi ) + δIm) − Cov(Qδ,yi )Cov(Qδ,yi )

′)
× Qiδ�i VarQδ

(θ |i)

=
n∑

Q′
iδ

([
Var(Qδ) + Var(u)

]
Cov(θ,yi ) − Cov(Qδ, θ)Cov(Qδ,yi )

)

i=1
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=
n∑

i=1

Q′
iδ Cov(θ,yi )Var(u), (A.5)

where the second equality invokes Lemma 2 with μ set equal to Qδ . Applying Lemma 3 (i) to 
the left hand side of (A.5), we see that

n∑
i=1

Q′
iδ Cov(θ,yi )Var(u)

≥
n∑

i=1

Q′
iδ

(
Var(u)[Var(zi ) + δIm] + δ Var(Qδ)Im

)
Qiδ�i VarQδ

(θ |i)

≥
n∑

i=1

Q′
iδ

(
Var(u)Var(zi )

)
Qiδ�i VarQδ

(θ |i)

≥ Var(u)Var(θ |y)

n∑
i=1

�iQ
′
iδ Var(zi )Qiδ, (A.6)

where the last inequality uses Lemma 1. Because Var(zi ) is positive definite, the right-hand side 
of (A.6) is quadratic in every component of Qiδ , for every i, while the left hand side is linear. 
This implies that {Qδ}δ>0 must be uniformly bounded in δ, establishing the claim.

Let Q be any limit point of {Qδ}δ>0. Observing that the matrix Var(zi ) − Cov(Q,yi ) Cov(Q,yi )
′

Var(Q)+Var(u)
is positive definite for any Q and passing to the limit as δ → 0 in (A.2) with Q set equal to Qδ , 
we must conclude that Q solves the system (14), thus completing the proof. �
Lemma 4. In any equilibrium, Cov(Q, θ) ≥ 0.

Proof. Follows from (A.5) and (A.6) by letting δ = 0 and replacing Qiδ with Qi . �
Proof of Proposition 2. For easy reference, we rewrite (15) here:

γ =
1 + ∑n

i=1
Cov(Q,θ)−Cov(θ,yi )

′ Var−1(zi ) Cov(Q,yi )

�i Var(θ |i)[Var(Q)+Var(u)−Cov(Q,yi )
′ Var−1(zi ) Cov(Q,yi )]∑n

i=1
1

�i Var(θ |i)
. (A.7)

By Lemma 1, the denominator of (A.7) is positive. When Cov(θ, yi ) = 0 for every i, 
Cov(Q, θ) = 0, so that γ > 0. We next suppose that Cov(θ, yi ) �= 0 for some i. Multiplying 
both sides of (14) by Cov(θ, yi )

′ and then summing over all i, we obtain

Cov(Q, θ)

=
n∑

i=1

Cov(θ, yi )
′[ Var(zi ) − Cov(Q,yi ) Cov(Q,yi )

′
Var(Q)+Var(u)

]−1[
Cov(θ, yi ) − Cov(Q,θ)

Var(Q)+Var(u)
Cov(Q, yi )

]
�i Var(θ |i) ,

which — given Cov(θ, yi ) �= 0 for some i and Lemma 3 — implies Cov(Q, θ) �= 0. Divide 
through by Cov(Q, θ); then

n∑ Cov(θ,yi )
′
[

Var(zi ) − Cov(Q,yi ) Cov(Q,yi )
′

Var(Q)+Var(u)

]−1[Cov(θ,yi )

Cov(Q,θ)
− Cov(Q,yi )

Var(Q)+Var(u)

]
�i Var(θ |i) = 1.
i=1
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Substituting this equality into the numerator of (A.7) to eliminate 1, we see that it suffices to 
show

Cov(θ,yi )
′[Var(zi ) − Cov(Q,yi )Cov(Q,yi )

′

Var(Q) + Var(u)

]−1[Cov(θ,yi )

Cov(Q, θ)
− Cov(Q,yi )

Var(Q) + Var(u)

]

+ Cov(Q, θ) − Cov(θ,yi )
′ Var−1(zi )Cov(Q,yi )

Var(Q) + Var(u) − Cov(Q,yi )
′ Var−1(zi )Cov(Q,yi )

≥ 0

(A.8)

for every i and the strict inequality holds for at least one i. By Lemma 4 together with Cov(Q, θ)

�= 0, we have Cov(Q, θ) > 0. Let ai = Var− 1
2 (zi ) Cov(θ, yi ) and bi = Var− 1

2 (zi ) Cov(Q, yi ). 
To establish (A.8), it is equivalent to show that

a′
i

[ {Var(Q) + Var(u)}Im − bib
′
i

Var(Q) + Var(u) − b′
ibi

]−1[
ai

[
Var(Q) + Var(u)

] − bi Cov(Q, θ)
]

+ Cov(Q, θ)2 − Cov(Q, θ)a′
ibi ≥ 0. (A.9)

Observe that[{Var(Q) + Var(u)}Im − bib
′
i

Var(Q) + Var(u) − b′
ibi

]−1

= Var(Q) + Var(u) − b′
ibi

Var(Q) + Var(u)

[
Im − bib

′
i

Var(Q) + Var(u)

]−1

=
[
1 − b′

ibi

Var(Q) + Var(u)

][
Im + 1

1 − b′
ibi

Var(Q)+Var(u)

bib
′
i

Var(Q) + Var(u)

]
.

Substitute this equality into (A.9), which then becomes:

(Cov(Q, θ) − a′
ibi )

2 + a′
iai{Var(Q) + Var(u)}

[
1 − b′

ibi

Var(Q) + Var(u)

]
≥ 0. (A.10)

It follows from Lemma 3 (ii) that b′
ibi = Cov(Q, yi )

′ Var−1(zi ) Cov(Q, yi ) ≤ Var(Q) and 
consequently, (A.10) is indeed true for every i, with strict inequality for some i, because 
Cov(θ, yi ) �= 0 for some i. The proof is now complete. �
Proof of Proposition 4. If Cov(θ, yi ) = 0 for all i, p = Var(θ)∑n

k=1
1

�k

(u −X) is obviously the unique 

linear equilibrium. So assume Cov(θ, yi ) �= 0 for some i. We first focus on the case in which 
Var(y) is positive definite. In this case, the discussion in the main text before and after the state-
ment of Proposition 1 makes it clear that linear equilibria are intimately connected to solutions 
Q to (14). Specifically, every linear equilibrium price function can be mapped to a vector Q that 
solves (14), and conversely, every solution to (14) generates a particular linear equilibrium price 
function.

In what follows we fix all parameters of the model but consider a variety of risk attitudes. 
Specifically, fix some number a > 0. Let P(a) be the set of all linear equilibrium price functions 
under some configuration {ρ(r)}, with ρ(r) ≥ a for all types. We claim that the set

Q(a) ≡
{
Q �= 0

∣∣∣Q = π
for some linear equilibrium price p = π ′y + γ u + c in P(a)

}

γ
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is well-defined and bounded. It is well-defined because γ > 0 by Proposition 2. As in (A.6) we 
can show that for every solution Q of (14),

n∑
i=1

Q′
i Cov(θ,yi ) ≥ Var(θ |y)

n∑
i=1

�iQ
′
i Var(zi )Qi , (A.11)

implying that the set Q(a) is bounded.
The map f i in (14) is continuously differentiable, so for any Q1, Q2 ∈Rnm,

f (Q1) − f (Q2) =
( 1∫

0

Df (Q2 + t (Q1 − Q2))dt
)
(Q1 − Q2), (A.12)

where Df denotes the Jacobian matrix of f and the integral of a matrix is to be understood 
componentwise. Because Q(a) is bounded, it follows from (A.12) that |f (Q1) − f (Q2)| <
|Q1 −Q2| for any Q1, Q2 ∈Q(a) when �i ’s are sufficiently large, or equivalently when traders 
are sufficiently risk averse. That is, when �i’s are sufficiently large, f is a compressive mapping 
on the set Q(a), implying that the system of equations (14) has a unique fixed-point. So, given 
the equivalence analysis already conducted, there is a unique linear equilibrium.

We now extend the argument to y with Var(y) not of full rank. Select a maximal linearly 
independent subset of {yij , i = 1, . . . , n, j = 1, . . . , m}, denoted by ȳ. Then Var(ȳ) is positive 
definite, and every yij not in ȳ can be expressed as a linear combination of ȳ. For any linear 
equilibrium p = π ′y + γ u + c, we can rewrite π ′y as a linear combination π̄ ′ȳ of ȳ. So to show 
uniqueness, it suffices to prove that the vector π̄ with p = π̄ ′ȳ + γ u + c a linear equilibrium is 
unique. Inserting the price function p = π̄ ′ȳ + γ u + c into (6), we can get a system of equations 
involving Q̄ := π̄/γ , which is similar to (14). The remainder of the proof consists in applying 
similar boundedness arguments, parallel to the positive definite case. �
Proof of Proposition 5. The sign of Cov(θ, p) is the same as that of Cov(Q, θ) because γ >

0, as shown in Proposition 2, and because u is independent of θ . That Cov(Q, θ) ≥ 0 then 
follows from Lemma 4. We now show that equality holds if and only if Cov(θ, yi ) = 0 for 
all i. Sufficiency is immediate by noting that Cov(Q, θ) = ∑n

i=1 Q′
i Cov(θ, yi ). For necessity, 

assume that Cov(Q, θ) = 0. Using (14), we see that for each i = 1, . . . , n,

Cov(θ,yi )
′Qi =

Cov(θ,yi )
′
[

Var(zi ) − Cov(Q,yi ) Cov(Q,yi )
′

Var(Q)+Var(u)

]−1
Cov(θ,yi )

�i Var(θ |i) .

Summing over all i, we must conclude that

n∑
i=1

Cov(θ,yi )
′
[

Var(zi ) − Cov(Q,yi ) Cov(Q,yi )
′

Var(Q)+Var(u)

]−1
Cov(θ,yi )

�i Var(θ |i)

=
n∑

i=1

Cov(θ,yi )
′Qi = Cov(Q, θ) = 0,

implying that Cov(θ, yi ) = 0 for every i. �
Proof of Proposition 6. We assume for this proof that there is idiosyncratic noise (Var(εi (j))

is positive definite). The case with no idiosyncratic noise is in the Online Appendix. We consider 
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a sequence of equilibria, indexed by t , along which the variance of noise trade vanishes para-
metrically. So in what follows, all equilibrium values will be indexed by t . In addition, we write 
Vart (u) for the variance of noise trade, and Vart (θ |i) for the variance of θ conditional on group 
i’s price and private signal, because this estimate will move as the equilibrium price function 
changes.

We first dispose of the case in which Cov(θ, y) = 0. In this case, just as in the proof of Propo-
sition 5, Qt = 0 and γt = Var(θ)∑n

k=1
1

�k

, with pt = γtu + ct for some sequence of intercepts {ct} that 

each solves (8). There is no dependence on the signals either in equilibrium or under the full-
information aggregator, so Part (i) follows trivially. Moreover, in the case under consideration, 
γt Vart (u) → 0 and ct = −[∑n

k=1
1

�k
]−1 Var(θ)X for all t , and Part (ii) follows as well.

So in what follows, assume Cov(θ, yi ) �= 0 for some i. Then by Proposition 5, π t �= 0 and so 
Qt �= 0. Define μt ≡ π t /|π t | and ιt ≡ γt/|π t |. Note that ιt > 0 by Proposition 2. Then by (10)
and (11), we have

αit =
[

Var(zi ) − Cov(π t ,yi )Cov(π t ,yi )
′

Var(π t ) + γ 2
t Vart (u)

]−1 [
Cov(θ,yi ) − Cov(π t , θ)Cov(π t ,yi )

Var(π t ) + γ 2
t Vart (u)

]
(A.13)

=
[

Var(zi ) − Cov(μt ,yi )Cov(μt ,yi )
′

Var(μt ) + ι2t Vart (u)

]−1 [
Cov(θ,yi ) − Cov(μt , θ)Cov(μt ,yi )

Var(μt ) + ι2t Vart (u)

]
,

(A.14)

βit = Cov(π t , θ) − Cov(θ,yi )
′ Var−1(zi )Cov(π t ,yi )

Var(π t ) + γ 2
t Vart (u) − Cov(π t ,yi )

′ Var−1(zi )Cov(π t ,yi )
(A.15)

= 1

|π t |
Cov(μt , θ) − Cov(θ,yi )

′ Var−1(zi )Cov(μt ,yi )

Var(μt ) + ι2t Vart (u) − Cov(μt ,yi )
′ Var−1(zi )Cov(μt ,yi )

. (A.16)

Notice that |μt | = 1. Also, by Lemma 1, 0 < Var(θ |y) ≤ Vart (θ |i) ≤ Var(θ), and indeed, 
Var(θ |y) is just a constant independent of the realization of y. So we can presume (using a sub-
sequence if necessary, but retaining the original notation) that μt → μ for some μ with |μ| = 1, 
and Vart (θ |i) → vi ∈ [Var(θ |y), Var(θ)]. It is without loss of generality to assume that Var(y)

is positive definite. Otherwise, re-write μ′
ty as μ̄′

t ȳ (μ̄t �= 0), where ȳ is a maximal linearly in-
dependent subset of y, and apply the same technique by substituting μ′

ty with μ̄′
t ȳ/|μ̄t |, and ιt

with ιt /|μ̄t |.
Claim 1. ι2t Vart (u) → 0.

Suppose not. Then (using a subsequence of t if needed) we can presume that ι2t Vart (u) is 
bounded away from zero. Because Vart (u) → 0 and ιt > 0 by Proposition 2, it must be that 
ιt → ∞. By (9) and the definition of μ,

μit = ιt

�i Vart (θ |i)αit (A.17)

for every i and t , and so, because {Vart (θ |i)} and {μit } are bounded, we have αit → 0 for all i. 
Using �i(μ) = Cov(θ, yi ) Var(μ) − Cov(μ, θ) Cov(μ, yi ) and (A.14), we therefore see that

αit =
([

Var(μt ) + ι2t Vart (u)
]

Var(zi ) − Cov(μt ,yi )Cov(μt ,yi )
′)−1

× [Cov(θ,yi )ι
2
t Vart (u) + �i(μt )] → 0 (A.18)
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for all i. Because there exists at least one nonzero vector of Cov(θ, yi ), say at i = k, it follows 
from (A.18) that ι2t Vart (u) is bounded. (For if not, αkt → Var−1(zk) Cov(θ, yk) �= 0 along some 
subsequence of {t}, a contradiction.)

Thus, each limit point G of ι2t Vart (u) must be finite, and it is strictly positive by our contra-
diction assumption. For any such limit point G, (A.18) tells us that Cov(θ, yi )G + �i(μ) = 0
for all i. Summing over all indices i, G 

∑
i μ

′
i Cov(θ, yi ) +

∑
i μ

′
i�i(μ) = 0. By Lemma 2, ∑

i μ
′
i�i(μ) = 0, and therefore G 

∑
i μ

′
i Cov(θ, yi ) = 0, or (because G > 0) Cov(μ, θ) = 0.

Now, using (A.17) and the equality in (A.18), we have[
{Var(μt ) + ι2t Vart (u)}Var(zi ) − Cov(μt ,yi )Cov(μt ,yi )

′]μit

= ιt

�i Vart (θ |i)
[
{Var(μt ) + ι2t Vart (u)}Cov(θ,yi ) − Cov(μt , θ)Cov(μt ,yi )

]
. (A.19)

Because {μit } and ι2t Vart (u) are bounded, so is the left hand side of (A.19). On the other hand, 
the right hand side of (A.19) cannot be bounded in t for any i with Cov(θ, yi ) �= 0, because 
ιt → ∞ and Cov(μ, θ) = 0, as just shown above. But that is a contradiction. Therefore, our 
claim is true and ι2t Vart (u) → 0.

Claim 2. ιt → ∞, and for each i, αit → 0, �i(μ) = 0.

For each i and t , let Bit := [
Var(μt ) + ι2t Vart (u)

]
Var(zi ) −Cov(μt , yi ) Cov(μt , yi )

′. Recall 
(9) for each i and index t , and multiply both sides by α′

itBit to obtain:

α′
itBitπ it = γt

�i Vart (θ |i)α
′
itBitαit .

Note that γt > 0 (by Proposition 2) and that Bit is positive semi-definite by Lemma 3 (i) and 
Var(yi ) 	 Var(zi ). It follows that for each i and t , α′

itBitπ it — and so α′
itBitμit as well — are 

nonnegative for any t and all indices i.
Now multiply both sides of (A.18) by Bit , and then pass to the limit as t → ∞, using Claim 1, 

to obtain for each i:

Bitαit − �i(μt ) → 0. (A.20)

Multiplying both sides by μ′
it and summing over i, we see that

lim
t→∞

(∑
i

μ′
itBitαit −

∑
i

μ′
it�i(μt )

)
= lim

t→∞
∑

i

μ′
itBitαit = 0,

where the latter equality follows from Lemma 2. Because we have just established that 
α′

itBitμit = μ′
itBitαit ≥ 0 for any t and every i, it follows that for all i,

lim
t→∞μ′

itBitαit = 0. (A.21)

Next, multiplying both sides of (A.17) by μ′
itBit , we have

μ′
itBitμit = ιt

�i Vart (θ |i)μ
′
itBitαit . (A.22)

We now claim that ιt → ∞. If not, then taking t → ∞ (along some subsequence for which ιt
tends to a finite number) over both sides of (A.22) and using (A.21) along with Vart (θ |i) → vi ∈
(0, ∞), we have μ′Biμi = 0, or
i
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Var(μ)Var(μ′
izi ) − Cov(μ,μ′

iyi )
2 = 0 (A.23)

for all i, where Bi = Var(μ) Var(zi ) − Cov(μ, yi ) Cov(μ, yi )
′. Because μ �= 0, there exists k

such that μk �= 0. However, when there is idiosyncratic noise (i.e., Var(εi (j)) is positive definite 
for all i and j ), (A.23) cannot hold for k because

Cov(μ,μ′
kyk)

2 ≤ Var(μ)Var(μ′
kyk) < Var(μ)[Var(μ′

kyk) + μ′
k Var(εk(j))μk]

= Var(μ)Var(μ′
kzk).

Hence, ιt → ∞. Reapplying (A.17) to all other indices i and recalling that {μit } is bounded, we 
can further conclude that αit → 0 for every i and then, by (A.20), �i(μ) = 0 for every i as well.

Claim 3. Cov(μ, θ) > 0.

Certainly, Cov(μ, θ) ≥ 0, because

Cov(μt , θ) = 1

|π t | Cov(π t , θ) > 0

for all sufficiently large t (because Cov(π t , θ) > 0 by Proposition 2). If, however, Cov(μ, θ) = 0, 
then multiplying both sides of (A.14) by the matrix Var(zi ) − Cov(μt ,yi ) Cov(μt ,yi )

′
Var(μt )+ι2t Vart (u)

and subse-

quently passing to the limit, using Claim 1 and αit → 0 in Claim 2, we see that

lim
t→∞

[
Var(zi ) − Cov(μt ,yi )Cov(μt ,yi )

′

Var(μt ) + ι2t Vart (u)

]
αit = Cov(θ,yi ) = 0

for any i, which contradicts the assumption that Cov(θ, yi ) �= 0 for some i. So Cov(μ, θ) > 0.

Claim 4. lim
t→∞|π t | = Cov(μ, θ)

Var(μ)
and lim

t→∞βit = 1 for all i.

By the Law of Total Variance, we know that for every t and information group i,

Var(θ) = Var(E(θ |zi , pt )) +E(Var(θ |zi , pt )) = Var(E(θ |zi , pt )) + Vart (θ |i), (A.24)

where we recall that Var(θ |zi , pt ) is independent of the realizations of zi and pt . Combining 
(A.24) with (12), we must conclude that for every i and t ,

Var(E(θ |zi , pt )) = Var(θ) − Vart (θ |i) = α′
it Cov(θ,yi ) + βit Cov(π t , θ)

= α′
it Cov(θ,yi ) + βit |π t |Cov(μt , θ). (A.25)

Passing to the limit in (A.25) as t → ∞, noting that Var(E(θ |zi , pt)) is bounded above by Var(θ), 
using Claim 2 (every limit point of αit is zero), and using Claim 3, we must conclude that βit |π t |
is bounded in t for every i. It’s also the case that βit |π t | only has non-zero limit points. For if 
0 were to be a limit point of βit |π t |, it would then follow from (A.16) and Cov(μ, θ) > 0 that 
Cov(θ, yi ) �= 0. But then the last inequality in Lemma 1 must hold strictly and uniformly in the 
price function, so that Var(θ) > Var(θ |i) for any limit point of Vart (θ |i). That would contradict 
(A.25), as the right hand must go to zero when βit |π t | → 0 (αit → 0 by Claim 2), while the 
middle term remains bounded away from 0 by virtue of Var(θ) − Var(θ |i) > 0. In summary, 
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βit |π t | is bounded in t for every i and has non-zero limit points. Pick any such limit point �i for 
each i; in other words, extract a subsequence (but retain notation t ) such that for every i,

βit |π t | → �i �= 0, (A.26)

in addition to the convergence of μt to μ and αit → 0.
Now, there is a second way to write Var(E(θ |zi , pt)). Recall from (4) that for every i and t , 

E(θ |zi , pt ) = α′
itzi + βit (pt − ct ), and so

Var(E(θ |zi , pt )) = Var(α′
itzi + βitpt ). (A.27)

Passing to the limit with t in both (A.25) and (A.27), and using the fact that αit → 0 (Claim 2), 
we see that for each i,

�i Cov(μ, θ) = lim
t→∞ Var(α′

itzi + βitpt ) = lim
t→∞ Var(βitpt )

= lim
t→∞β2

it

[
Var

(∑
k

π ′
ktyk

)
+ γ 2

t Vart (u)
]

= lim
t→∞β2

it |π t |2
[

Var
(∑

k

μ′
ktyk

)
+ ι2t Vart (u)

]
= �2

i Var(μ),

where the third equality uses the form of the price function and the independence of noise 
trade, and the last equality invokes Claim 1 (ι2t Vart (u) → 0) along with the fact that β2

it |π t |2
is bounded in t . Because �i �= 0, we can therefore conclude from these equalities that �i =
Cov(μ, θ)/ Var(μ) for every i, and using this information in (A.26), we have, for every i:

lim
t→∞βit |π t | = Cov(μ, θ)

Var(μ)
. (A.28)

To complete the proof of Claim 3, we argue first that |π t | cannot have a zero limit point. For 
suppose that |π t | → 0 along some subsequence, then — given (A.28) and the fact Cov(μ, θ) > 0
— βit → ∞ for all i along that same subsequence. That implies — using (7) — that γt is negative 
along a subsequence of t , which contradicts Proposition 2.

We can now combine this observation with Claim 2 (ιt → ∞) to conclude that γt = |π t |ιt →
∞ and so, by (7), 

∑n
i=1

1−βit

�i Vart (θ |i) → 0. At the same time, (A.28) informs us that limt→∞ βit

is independent of i. Therefore, βit → 1 for all i. Applying this information to (A.28) again, the 
Claim is proved.

We now complete the proof of Proposition 6. Noting that we’ve already chosen a subsequence 
so that μt converges to μ, and that |π t | then converges by Claim 4, write π = limt π t . Recall 
that �i(μ) ≡ Cov(θ, yi ) Var(μ) − Cov(μ, θ) Cov(μ, yi ) = 0 (by Claim 2), so that

Cov(θ,yi ) = Cov(μ, θ)

Var(μ)
Cov(μ,yi ) = |π |Cov(μ,yi ) = Cov(π,yi ) (A.29)

for all i, where the second equality follows from Claim 4. This proves Part (i) of the Proposition. 
Next,

γ 2
t Vart (u) = |π t |2ι2t Vart (u) → 0

by Claims 1 and 4. Finally, by Claims 2 and 4, αit → 0 and βit → 1 for all i, so invoking (12), we 
must conclude that Vart (θ |i) → Var(θ) −Cov(π , θ) whenever π t → π along some subsequence 
of t . The asserted limit on {ct} then follows from (8), and the proof of Part (ii) is complete. �
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Proof of Proposition 7. Part (i). If the condition there holds, equation (14) becomes

Qi = Cov(θ, yi)[∑n
k=1 Q2

k Var(yk) + Var(u)] − Qi Var(yi)Cov(Q, θ)

�i Var(θ |yi,
∑n

k=1 Qkyk + u)[Var(yi)(Var(Q) + Var(u)) − Cov(Q, yi)2] . (A.30)

Recall that Q = π/γ , that γ > 0 by Proposition 2, and that Cov(p, θ) = Cov(π , θ) ≥ 0 by 
Proposition 5. It follows that Cov(Q, θ) ≥ 0. Now a simple inspection of (A.30) yields the de-
sired conclusion.

(ii). Fix i0 as in the statement of the Proposition. If Qi0 < 0, there is nothing to prove, so 
suppose that Qi0 ≥ 0. By Proposition 5, we have Cov(Q, θ) > 0 (because Cov(θ, yk) > 0 for at 
least one k), and we also know that Cov(θ, yi0) = 0. Using all this information in (14), we can 
conclude that

Cov(Q, yi0) =
n∑

k=1

Qk Cov(yk, yi0) ≤ 0. (A.31)

Now suppose, contrary to the assertion of the Proposition, that Qi ≥ 0 for all i. Then our as-
sumption that Cov(yk, yi0) > 0 for all k, along with (A.31), implies that Q = 0. Invoking (14)
again, it is easy to see that this implies Cov(θ, yi) = 0 for all i, a contradiction.

(iii). Because Cov(θ, yi) > 0 for some i, Proposition 5 tells us that Cov(Q, θ) =∑n
i=1 Qi Cov(θ, yi) > 0. Our conclusion follows immediately from the convention that 

Cov(θ, yi) ≥ 0 for all i.
(iv). From (14) and the inequality | Cov(Q, θ) Cov(Q, yi)| ≤ Var(Q)

√
Var(θ)Var(yi), we 

have

Qi ≥ Cov(θ, yi)[Var(Q) + Var(u)] − Var(Q)
√

Var(θ)Var(yi)

�i Var(θ |yi,
∑n

k=1 Qkyk + u)[Var(yi)(Var(Q) + Var(u)) − Cov(Q, yi)2] (A.32)

for every i. Moreover, similar to (A.6), we have

n∑
i=1

Qi Cov(θ, yi) ≥ Var(θ |y1, . . . , yn)

n∑
i=1

Q2
i �i Var(yi),

so Q is bounded uniformly over Var(u). Use this information in (A.32) to complete the 
proof. �
Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2019 .05 .004.
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