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This paper gives a new approach to show the existence and regularity of linear equilibrium established
by Lou r⃝ al. (2019) for a noisy rational expectations economy. Different from the existing method
which essentially requires to find a fixed point of a system of nonlinear algebraic equations, the
new approach is operated directly on an alternative form of market-clearing conditions. One main
advantage of the new approach is that besides homogeneous-valuation economies, it can also handle
the existence of equilibrium in economies with heterogeneous valuations where the existing method
for dealing with homogeneous-valuation economies fails to work.
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1. Introduction

Rational expectations equilibrium (REE) economies have
een widely studied since the pioneering works of Grossman
1976), Hellwig (1980) and Grossman and Stiglitz (1980). Gross-
an (1976) proposes a REE economy with a constant supply of

he risky asset and show that the equilibrium price perfectly
ggregates all private information of market participants. To
revent prices from becoming fully revealing, noise trading is
ntroduced into the economy to make the equilibrium price only
artially revealing in a finite-agent setting (Hellwig, 1980) and a
ontinuum-agent setting (Grossman and Stiglitz, 1980).
Lou r⃝ al. (2019) generalize the finite-agent economy in Hell-

wig (1980) to a continuum-agent economy with general signal
structure where traders’ signals are multidimensional and ar-
bitrary correlation pattern between the components of traders’
signals and between the fundamental of the risky asset and
signals is allowed.1 Lou r⃝ al. (2019) transfer equivalently the
quilibrium existence problem into a fixed-point existence prob-
em. When there is no idiosyncratic noise, the authors develop
new technique to solve the equilibrium existence problem

✩ This work was supported in part by the National Natural Science Foundation
of China under Grant 71971208.
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cience, Chinese Academy of Sciences, No. 55 Zhongguancun East
oad, Beijing 100190, China.
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S. Wang).
1 The generality of dimension and correlation pattern of signals can help

ormulate the situation where traders share signals with their neighbors in a
ocial network. See Lou r⃝ al. (2019) for more potential applications of the
enerality.
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0304-4068/© 2020 Elsevier B.V. All rights reserved.
because in this case, the underlying fixed-point function is not
uniformly bounded and consequently, Brouwer’s fixed-point the-
orem cannot be applied directly. Specifically, the authors first
construct an auxiliary sequence of uniformly bounded functions,
and then get a fixed point for every such a function. Taking the
limit point of this sequence of fixed points (which is shown to
be bounded) gets a fixed point of the original function which
involves a system of nonlinear algebraic equations, coming from
coefficient matching based on market-clearing conditions.2

This paper aims to present a new approach to show the
xistence and regularity of linear equilibrium in the noisy REE
conomy in Lou r⃝ al. (2019). The existence of linear equilib-
ium is shown by applying Brouwer’s fixed-point theorem to a
unction constructed directly from an alternative form of (one-
imensional) market-clearing conditions, no longer to a system
f nonlinear algebraic equations (which was done in Lou r⃝

al. (2019)). To be specific, we first construct an auxiliary price
function in which an independent random variable is addition-
ally introduced, and write the market-clearing condition in an
alternative form where one side is the price function, while the
other side is a term involving a variance-adjusted conditional
expectation. We then construct two functions which map to the
coefficients on signals and noise trade in the price function based
on the alternative form of market-clearing conditions, and show
the continuity and uniform boundedness of the two functions
based on some elegant properties of conditional expectation
and variance. Applying Brouwer’s fixed-point theorem to get a

2 When there is idiosyncratic noise, the proof of existence of linear equilib-
rium is easy by applying directly Brouwer’s fixed-point theorem because in this
case the underlying fixed-point function is uniformly bounded and continuous,
see the proof of Proposition 1 in Lou r⃝ al. (2019) for more details.
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sequence of fixed-points. In addition, we show that any limit
point of the coefficient on noise trade does not equal zero. Finally,
taking the limit of both sides of the alternative market-clearing
condition gives a linear equilibrium. Furthermore, in two cases
when noise trading is large or signals take the classical form of the
sum of the fundamental and an independent noise, the regularity
of equilibrium prices (i.e., an increase in noise demand implies a
higher price) is also established.

Working directly on the one-dimensional market-clearing
condition (instead of a system of nonlinear equations) facilitates
us to utilize some elegant properties of conditional expectation
and variance, for example, the boundedness and monotonicity of
conditional variance with respect to traders’ signals, the law of
total variance, etc. It is worth remarking that our new approach
can also be applied to show the existence and regularity of an
extended version of the model in Lou r⃝ al. (2019) where traders
aluate the risky asset heterogeneously. However, the method
n Lou r⃝ al. (2019) cannot be applied to solve equilibrium
xistence of economies with heterogeneous valuations because
t depends crucially on one property, which does not hold for
eterogeneous-valuation economies in general; see Section 4 for
ore illustrations.
Except for the work mentioned above, our work also relates

o the literature on equilibrium existence and uniqueness of REE
conomies. Pálvölgyi and Venter (2015a) show that the linear
quilibrium in Grossman and Stiglitz (1980) is unique in the
lass of all continuous price functions. Barlevy and Veronesi
2000) consider a setting where the fundamental is binomial
nd investors are risk-neutral instead of the classical normality-
ARA assumption. Breon-Drish (2015) analyzes the finite-agent
conomy of Hellwig (1980), but with an extension to more
eneral signal structures of the exponential family. There is also
iterature that studies existence and uniqueness of an equilibrium
or economies with multiple risky assets, for instance, Pálvölgyi
nd Venter (2015b), Chabakauri et al. (2017) and Carpio and Guo
2019). In addition, our work is also related to heterogeneous-
aluation economies; see Rostek and Weretka (2012),
ives (2014) and Rahi and Zigrand (2018). Indeed, traders are
ossibly uncertain about the values of risky assets and valuate
hem heterogeneously. Heterogeneity of valuations can also be
nterpreted as arising from the fact that traders valuate their
nvestment from different perspectives, for instance, short-term
eturns, long-term returns, and the volatility of prices, etc.

The paper is organized as follows: Section 2 introduces the
odel. Section 3 presents the new approach to show the exis-

ence of linear equilibrium, and regularity of linear equilibrium
n two special cases. Section 4 offers an extension to economies
ith heterogeneous valuations. Section 5 concludes the paper. All
reliminary lemmas are in the Appendix.
Details on notation. We follow the notation in Lou r⃝ al.

2019). All vectors are column vectors by default. The operator
ar will stand for variance and Cov will stand for covariance.
or any vector µ = (µ′

1, . . . ,µ
′
n)

′ (where each component µi
s m-dimensional, and ′ denotes the transpose of a vector) and
andom variable x, Cov(µ, x) is shorthand for Cov(

∑n
k=1 µ′

kyk, x)
and Var(µ) stands for Var(

∑n
k=1 µ′

kyk), where y = (y ′

1, . . . , y
′
n)

′ is
the aggregate signal in the economy. For any random variable x
and m-dimensional signal y i = (yi1, . . . , yim)′, Cov(x, y i) is short-
hand for the vector of covariances (Cov(x, yi1), . . . , Cov(x, yim))′.
For any multidimensional random vector z , Var(z) denotes the
variance–covariance matrix of z . Finally, |·| denotes the 2-norm
of a vector.
2. The model

Consider the economy in Lou r⃝ al. (2019) with a specification
that there is no idiosyncratic noise.3 There is a single risky asset
and a single trading period. The risky asset is in fixed supply,
which is assumed to be zero for simplicity, and has fundamental
value θ , which is common to all traders, but not directly observed
by traders.

There are n traders in the economy. Each trader i (i = 1, . . . , n)
has a CARA utility function and maximizes her conditional ex-
pected utility of her net profit Wi based on her information set
Fi:

E [− exp{−ρiWi}|Fi] .

Here ρi represents trader i’s coefficient of absolute risk aversion,
Wi = xi(θ − p) with xi being the holdings of the risky asset and p
its price. Due to the CARA assumption, each trader’s initial wealth
is without loss of generality assumed to be zero here.

Besides the price p, each trader i can also observe a multidi-
mensional private signal y i ∈ Rm. That is, the information set of
trader i is given by

Fi = {y i, p}.

We use y = (y ′

1, . . . , y
′
n)

′ to denote the aggregate signal in
the economy. The private signal y i and the price p together
determine trader i’s demand; see (1) below. In addition to such
demands, there is also noise demand u in the economy, which
is interpreted as the stochastic demand of ‘‘noise traders’’ left
unmodeled. We impose the following assumption, which will be
maintained throughout.

Assumption 1. All random variables are normally distributed,
with means normalized to zero. The variance–covariance matrix
Var(y i) is positive definite for every i, and Var(θ |y) > 0. Noise
demand u is independent of other random variables in the model,
and has a positive variance.

Except for joint normality and the requirement that all sig-
nals in the economy (i.e., the aggregate signal y) cannot fully
pin down the fundamental, very little restriction is imposed on
the correlation pattern between the components of y or on the
precise relationship of its components with the fundamental θ .
Due to the generality of dimension and correlation pattern of
signals, several existing economies serve as special cases; see for
example, Grossman and Stiglitz (1980), Grossman (1976), Hellwig
(1980) and Ozsoylev and Walden (2011). Importantly, we do
not require that the variance–covariance matrix of the aggregate
signal y is positive definite. This weak requirement permits the
considered economy to deal with the situation that traders share
signals with their neighbors in a social network; see Lou r⃝ al.
(2019) for more illustrations on the generality of the considered
economy.

Under the CARA-normality setting, it is well-known that the
optimal demand for the risky asset by trader i is given by4

x∗

i =
E(θ |y i, p) − p
ρi Var(θ |y i, p)

. (1)

3 Note that when there is no idiosyncratic noise, the continuum-agent
conomy in Lou r⃝ al. (2019) is mathematically equivalent to the finite-agent
conomy considered here. Furthermore, the economy considered in this paper
lso coincides with the economy in Hellwig (1980) except for an extension to
ermit multidimensional signals and arbitrary signal structure (still remaining
ithin the standard framework of normality).
4 Notice that the equality (1) is well defined because Var(θ |y i, p) ≥

Var(θ |y, u) = Var(θ |y) > 0 by Assumption 1 and Lemma 4 in the Appendix.
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A rational expectations equilibrium is defined as a price p, together
with the optimal demands x∗

i ’s, which are given by (1), satisfy the
following market-clearing condition:
n∑

i=1

x∗

i + u = 0. (2)

As done in the literature, we restrict our attention to the class of
linear price functions given by

p =

n∑
k=1

π′

kyk + γ u, (3)

where (π′

1, . . . ,π
′
n)

′ represents the weights on the aggregate
signal y (each component is m-dimensional, i.e., πk = (πk1, . . . ,

πkm)′ ∈ Rm for each k), and γ ̸= 0 is the weight on noise trade.5
An equilibrium price p with the form (3) is said to be regular if
γ > 0. The regularity means that an increase in noise demand
implies an increase in the price.

3. A new approach to the existence and regularity

In this section, we propose a new approach to show the
existence and regularity of linear equilibrium in the economy in
last section.

Theorem 1. There exists a linear rational expectations equilibrium.

Proof. In the case where Cov(θ, y) = 0, we see that p =
Var(θ )∑n
k=1 ρk

u is an equilibrium price. We next assume that Cov(θ, y i)

= 0 for at least one i.

Inserting traders’ optimal demands (1) into the market-
learing condition (2), we get

∑n
i=1

E(θ |yi,p)−p
ρi Var(θ |yi,p)

+ u = 0. Moving

the term on p into the right-hand side of the preceding equality,
e obtain
n

i=1

E(θ |y i, p)
ρi Var(θ |y i, p)

+ u =

n∑
i=1

1
ρi Var(θ |y i, p)

p,

hich can alternatively be written as

=

[
n∑

i=1

1
ρi Var(θ |y i, p)

]−1 ( n∑
i=1

E(θ |y i, p)
ρi Var(θ |y i, p)

+ u

)
. (4)

Consider a maximal linearly independent subset of {y ij, i =

1, . . . , n, j = 1, . . . ,m}, and denote the vector of such a subset by
ȳ and its dimension by t . That is, Var(ȳ) is positive definite, and
for every yij which is not in ȳ, the variance–covariance matrix of
(ȳ ′, yij)′ fails to have full rank.

Fix some ℓ ∈ N. We define an auxiliary price function

pℓ(π, γ ) = π′ȳ + γ u + v/ℓ, (5)

where π ∈ Rt , γ ∈ R, v is a normal random variable with mean
zero and positive variance, and independent of other random
variables in the model. Invoking Lemma 1 in the Appendix, we
see that E(θ |y i, pℓ(π, γ )) is a linear function of y i and pℓ(π, γ ),
and is further a linear function of ȳ, u, v because pℓ(π, γ ) is a
linear function of ȳ, u, v (see price function (5)), and each compo-
nent of y i can be linearly expressed in terms of the components of
ȳ by the definition of ȳ. Also note that Var(θ |y i, pℓ(π, γ )) is a con-
stant (see Lemma 1). Therefore, we can reasonably define three
functions f ℓ : Rt+1

→ Rt , gℓ : Rt+1
→ R and hℓ : Rt+1

→ R such

5 Because all random variables are normalized to have mean zero, there is
no intercept term in price function (3).
that for each π ∈ Rt and γ ∈ R, (f ℓ(π, γ )′, gℓ(π, γ ), hℓ(π, γ ))′
is the unique vector that satisfies the following equality almost
surely:[

n∑
i=1

1
ρi Var(θ |y i, pℓ(π, γ ))

]−1 ( n∑
i=1

E(θ |y i, pℓ(π, γ ))
ρi Var(θ |y i, pℓ(π, γ ))

+ u

)
= f ℓ(π, γ )′ȳ + gℓ(π, γ )u + hℓ(π, γ )v, (6)

where the uniqueness follows from the independence of ȳ, u and
v.

Consider the two functions f ℓ and gℓ. We first show that they
are uniformly bounded over Rt+1. By virtue of Lemma 4, the
Cauchy–Schwarz inequality E((

∑m
i=1 zi)

2) ≤ m
∑m

i=1 E(z
2
i ), the

relation Var(E(θ |·)) ≤ Var(θ ) (see Lemma 3 in the Appendix),
and the independence of ȳ, u and v, squaring both sides of (6)
gives

Var(f ℓ(π, γ )′ȳ) + gℓ(π, γ )2 Var(u) + hℓ(π, γ )2 Var(v)

≤ 2 Var(θ )2
[

n∑
i=1

1
ρi

]−2 (
n

n∑
i=1

Var(θ )
ρ2
i Var(θ |y)2

+ Var(u)

)
. (7)

Let λmin denote the minimum eigenvalue of Var(ȳ), which is
positive because Var(ȳ) is positive definite by the definition of
¯ . By the relation

min|f ℓ(π, γ )|2≤ Var(f ℓ(π, γ )′ȳ)

nd the inequality (7), we see that

f ℓ(π, γ )|

≤

√2 Var(θ )2

λmin

[
n∑

i=1

1
ρi

]−2 (
n

n∑
i=1

Var(θ )
ρ2
i Var(θ |y)2

+ Var(u)

)
=: B1

and

|gℓ(π, γ )| ≤

√ 2 Var(θ )2

Var(u)

[
n∑

i=1

1
ρi

]−2 (
n

n∑
i=1

Var(θ )
ρ2
i Var(θ |y)2

+ Var(u)

)
=: B2,

implying that the two functions f ℓ and gℓ are uniformly bounded
over Rt+1. Indeed, |f ℓ(π, γ )| ≤ B and |gℓ(π, γ )| ≤ B for any
π ∈ Rt and γ ∈ R, where B = max{B1, B2}. Furthermore,
by Lemma 2 in the Appendix, f ℓ and gℓ are continuous on
Rt+1. It then follows from Brouwer’s fixed-point theorem that the
restriction of functions f ℓ and gℓ to the subdomain [−B, B]t+1 has
fixed point (π∗

ℓ, γ
∗

ℓ ) (this fixed point clearly depends on ℓ, so we
se the subscript ℓ to highlight it), i.e.,

ℓ(π
∗

ℓ, γ
∗

ℓ ) = π∗

ℓ and gℓ(π∗

ℓ, γ
∗

ℓ ) = γ ∗

ℓ .

It is easy to see that γ ∗

ℓ ̸= 0 because otherwise, on the
ne hand, the coefficient on u on the right-hand side of (6)
quals zero, but on the other hand, the coefficient on u on
he left-hand side of (6) is not less than the positive number∑n

i=1
1
ρi

]−1 Var(θ |y) (invoking Lemma 4 in the Appendix), a

contradiction.
For each ℓ ∈ N, we can get a fixed point (π∗

ℓ, γ
∗

ℓ ) of the
two functions f ℓ and gℓ. Consider the sequence of fixed points
(π∗

ℓ, γ
∗

ℓ )}ℓ∈N. Plugging π = π∗

ℓ and γ = γ ∗

ℓ into (6) gives[
n∑

i=1

1
ρi Var(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))

]−1

×

(
n∑ E(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))
ρ Var(θ |y , p (π∗, γ ∗))

+ u

)

i=1 i i ℓ ℓ ℓ
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= (π∗

ℓ)
′ȳ + γ ∗

ℓ u + hℓ(π∗

ℓ, γ
∗

ℓ )v. (8)

Observe that the sequence {(π∗

ℓ, γ
∗

ℓ )}ℓ∈N is bounded noting the
uniform boundedness of f ℓ and gℓ over Rt+1, as shown earlier.
Hence, we may pass to a subsequence if necessary and assume
that π∗

ℓ → π∗ and γ ∗

ℓ → γ ∗ for some π∗
∈ Rt and γ ∗

∈ R as
ℓ → ∞.

We claim now that π∗
̸= 0. Indeed, taking the covariance

ov(θ, ·) of both sides of (8) gives

π∗

ℓ)
′Cov(θ, ȳ)

=

[
n∑

i=1

1
ρi Var(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))

]−1

×

n∑
i=1

Cov(θ,E(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ )))
ρi Var(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))

≥

[
n∑

i=1

1
ρi Var(θ |y)

]−1
min{i|Cov(θ,yi)̸=0} ϵi

Var(θ )max1≤k≤n ρk
> 0 (9)

or every ℓ ∈ N, where the equality uses the independence of θ

nd {u, v}, the two inequalities follow from Lemmas 4 and 5 in
he Appendix. Consequently, it follows from (9) that, as the limit
f {π∗

ℓ}, π
∗

̸= 0, establishing the claim.
We also claim that γ ∗

̸= 0. By Lemma 1 in the Appendix, the
onditional mean of θ is given by

(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ )) = α′

i,ℓy i + βi,ℓpℓ(π∗

ℓ, γ
∗

ℓ ), (10)

here

i,ℓ =

[
Var(yi) −

Cov(π∗
ℓ
, yi)Cov(π∗

ℓ
, yi)′

Var(π∗
ℓ
) + (γ ∗

ℓ
)2 Var(u) + Var(v)/ℓ2

]−1

×

[
Cov(θ, yi) −

Cov(π∗
ℓ
, θ )

Var(π∗
ℓ
) + (γ ∗

ℓ
)2 Var(u) + Var(v)/ℓ2

Cov(π∗
ℓ , yi)

]
,

βi,ℓ =
Cov(π∗

ℓ
, θ ) − Cov(θ, yi)′Var(yi)−1Cov(π∗

ℓ
, yi)

Var(π∗
ℓ
) + (γ ∗

ℓ
)2 Var(u) + Var(v)/ℓ2 − Cov(π∗

ℓ
, yi)′Var(yi)−1Cov(π∗

ℓ
, yi)

.

Plugging (10) into (8) and noting the relation pℓ(π∗

ℓ, γ
∗

ℓ ) =

(π∗

ℓ)
′ȳ + γ ∗

ℓ u + v/ℓ, we have[
n∑

i=1

1
ρi Var(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))

]−1

×

(
n∑

i=1

α′

i,ℓy i + βi,ℓpℓ(π∗

ℓ, γ
∗

ℓ )
ρi Var(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))
+ u

)
= pℓ(π∗

ℓ, γ
∗

ℓ ) − v/ℓ + hℓ(π∗

ℓ, γ
∗

ℓ )v,

r, equivalently,

ℓ(π∗

ℓ, γ
∗

ℓ ) =

[
n∑

i=1

1 − βi,ℓ

ρi Var(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))

]−1

×

(
n∑

i=1

α′

i,ℓy i

ρi Var(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))

+ u +

[
n∑

i=1

1
ρi Var(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))

]

× (1/ℓ − hℓ(π∗

ℓ, γ
∗

ℓ ))v

)
. (11)

Define Q ∗

ℓ = π∗

ℓ/γ
∗

ℓ (notice that we have shown that γ ∗

ℓ ̸= 0).
ere without loss of generality, we assume that Var(y) is positive
efinite. Matching the coefficients on both sides of (11), we have
or every i = 1, . . . , n, Eq. (12) which is given in Box I. Following
he arguments in the proof of Proposition 1 in Lou r⃝ al. (2019),
e can show that the sequence {Q ∗

ℓ } is bounded. As a result,
∗

̸= 0 because otherwise, π∗
= 0, contradicting π∗

̸= 0 that
e have shown above.
We finally show that p = (π∗)′ȳ+γ ∗u is an equilibrium price.

ecause γ ∗
̸= 0, the variance–covariance matrix of (y ′

i, (π
∗)′ȳ +

∗u)′ is positive definite. Then it follows from Lemma 2 in the
Appendix that

(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ )) → E(θ |y i, (π
∗)′ȳ + γ ∗u)

s ℓ → ∞. By the preceding relation and Lemma 3 in the
Appendix,

ar(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ )) → Var(θ |y i, (π
∗)′ȳ + γ ∗u)

s ℓ → ∞. Consequently, the term on v at the left-hand side
f (8) disappears and thus hℓ(π∗

ℓ, γ
∗

ℓ ) → 0 as ℓ → ∞. Taking
he limit of both sides of (8) as ℓ → ∞, we conclude that
= (π∗)′ȳ + γ ∗u satisfies (4) and is thus a linear equilibrium

rice. The proof is completed. □
We summarize the new approach to the proof of the equilib-

ium existence in Theorem 1 as follows. First, we construct an
uxiliary price function in which an independent random variable
s additionally introduced; see (5), and write the market-clearing
ondition in an alternative form where one side is the price
unction while the other side is a term involving a variance-
djusted conditional expectation; see (4). Second, we construct
wo functions (i.e., f and g) which map to the coefficients on
signals and noise trade in the price function based on an alterna-
tive form of the market-clearing condition, and show the uniform
boundedness and continuity of the two functions based on some
elegant properties of conditional expectation and variance. Third,
applying Brouwer’s fixed-point theorem to get a sequence of fixed
points (i.e., {(π∗

ℓ, γ
∗

ℓ )}). Fourth, in order to take the limit as the
ntroduced random variable vanishes (i.e., ℓ → ∞) to get the
esired equilibrium, we show that any limit point of the coeffi-
ients on the signals and noise trade do not equal zero. Finally,
aking the limit of both sides of the alternative market-clearing
ondition gives a linear equilibrium.
The main reason why we introduce an auxiliary random vari-

ble into the price function is that the coefficient on noise trade
in the expression E(θ |y i, π

′ȳ + γ u) is not continuous at γ =

in general. So even though we get the uniform boundedness
f the two functions f and g , we also cannot apply Brouwer’s
ixed-point theorem to get a linear equilibrium. However, the
ndependence of the newly introduced random variable in the
rice function guarantees the continuity of functions f and g , and

then enables us to apply Brouwer’s fixed-point theorem.
The newly developed method differs from the one in Lou r⃝ al.

(2019). The method in Lou r⃝ al. (2019) transfers equivalently the
quilibrium existence problem to a fixed-point existence problem
f a system of nonlinear algebraic equations, while our new
pproach is operated directly on an alternative form of market-
learing conditions. Although, similar to Lou r⃝ al. (2019), we
lso construct a function and need to find a fixed point of the
unction, we analyze the properties of the constructed function
necessary for applying Brouwer’s fixed-point theorem), for ex-
mple, uniform boundedness and continuity, directly based on
he one-dimensional, alternative form of market-clearing condi-
ions. Working directly on the one-dimensional market-clearing
ondition facilitates us to utilize some elegant properties of con-
itional expectation and variance, for example, the boundedness
nd monotonicity of conditional variance with respect to traders’
ignals, the law of total variance, etc. One advantage of the
ew method is that besides homogeneous-valuation economies,
t can also handle the existence of equilibrium in economies with
eterogeneous valuations, see Section 4 for details.
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i
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Q ∗

i,ℓ =
αi,ℓ

ρi Var(θ |y i, pℓ(Q ∗

ℓ , γ ∗

ℓ ))

=

[
Var(y i) −

Cov(Q ∗
ℓ

,yi)Cov(Q ∗
ℓ

,yi)′

Var(Q ∗
ℓ
)+Var(u)+Var(v)/(ℓγ ∗

ℓ
)2

]−1 [
Cov(θ, y i) −

Cov(Q ∗
ℓ

,θ )
Var(Q ∗

ℓ
)+Var(u)+Var(v)/(ℓγ ∗

ℓ
)2
Cov(Q ∗

ℓ , y i)
]

ρi Var(θ |y i, (Q ∗

ℓ )′ȳ + u + v/(ℓγ ∗

ℓ ))
. (12)

Box I.
a

V

π

f

a

g

Theorem 1 shows the existence, but not the regularity of linear
equilibrium.6 The following theorem establishes the regularity
of linear equilibrium when noise trading is relatively large or
signals take the special form of the sum of the fundamental and
an independent noise.

Theorem 2. Suppose either of the following two conditions holds:

• Var(u) > n
∑n

i=1
Var(θ )

ρ2
i Var(θ |y)2

;

• Traders’ signals take the form of yij = θ + ϵij, i = 1, . . . , n,
j = 1, . . . ,m, where any two signals are either identical or
have mutually independent noises.

Then there exists a regular, linear rational expectations equilibrium.

Proof. In this proof, we follow the notations used in the proof of
Theorem 1. We first consider the first condition. We claim that
infℓ∈N γ ∗

ℓ > 0. Because E(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ )) is a linear function of
y i and pℓ(π∗

ℓ, γ
∗

ℓ ) by Lemma 1 in the Appendix, and pℓ(π∗

ℓ, γ
∗

ℓ )
s further a linear function of ȳ, u and v, there is a term on
and denote such a coefficient as vℓ(π∗

ℓ, γ
∗

ℓ ) in the expression∑n
i=1

E(θ |yi,pℓ(π∗
ℓ
,γ ∗

ℓ
))

ρi Var(θ |yi,pℓ(π∗
ℓ
,γ ∗

ℓ
)) . We have

ℓ(π∗

ℓ, γ
∗

ℓ )
2 Var(u) ≤ Var

(
n∑

i=1

E(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))
ρi Var(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))

)

≤ n
n∑

i=1

Var(E(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ )))
ρ2
i Var(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))2

≤ n
n∑

i=1

Var(θ )
ρ2
i Var(θ |y)2

, (13)

where the first inequality follows from the independence of
u, v and y, the second from the Cauchy–Schwarz inequality
E((
∑m

i=1 zi)
2) ≤ m

∑m
i=1 E(z

2
i ), and the last one from Lemmas 3

and 4 in the Appendix. Then by (13), together with the condition
on Var(u) in this theorem, we have

|vℓ(π∗

ℓ, γ
∗

ℓ )|≤

√n
∑n

i=1
Var(θ )

ρ2
i Var(θ |y)2

Var(u)
< 1 (14)

for any ℓ ∈ N. Together, (8) and (14) imply that

γ ∗

ℓ ≥

[
n∑

i=1

1
ρi Var(θ |y i, pℓ(π∗

ℓ, γ
∗

ℓ ))

]−1 (
1 − |vℓ

(
π∗

ℓ, γ
∗

ℓ |
)

≥

[
n∑

i=1

1
ρi Var(θ |y)

]−1
⎛⎜⎝1 −

√n
∑n

i=1
Var(θ )

ρ2
i Var(θ |y)2

Var(u)

⎞⎟⎠
> 0

6 Indeed, in the proof of Theorem 1, we only show that γ ∗
̸= 0, but not

γ ∗ > 0.
for every ℓ ∈ N. This provides a strictly positive, uniform lower
bound to the sequence {γ ∗

ℓ }. As a result, as the limit of {γ ∗

ℓ }, we
have γ ∗ > 0. Using the similar arguments as in the proof of
Theorem 1, we can show that there exists a linear equilibrium.
The linear equilibrium is clearly regular because γ ∗ > 0.

Next, we consider the special signal structure of yij = θ + ϵij.
Denote τij = 1/Var(ϵij). Take ℓ = ∞ such that there is no term
v in the price function, and denote f ∞ and g∞ as f and g for
simplicity, respectively. Consider the expression E(θ |y i, π

′ȳ+γ u),
where π ∈ Rt

+
and γ ∈ R+. Without loss of generality, we assume

that ȳ does not include the random variables in y i (otherwise,
we can remove the components of π′ȳ from π′ȳ + γ u which
can be linearly expressed in terms of the components of y i). For
notational simplicity, we re-denote the random variables in ȳ as
{yk = θ + ϵk, k = 1, . . . , t}. Because Var(ȳ) has a full rank and
it is assumed that any two signals are either identical or have
mutually independent noises, the noise terms {ϵk} are mutually
independent. By Lemma 1 in the Appendix, together with some
simple calculations, we get

E(θ |y i, π
′ȳ+γ u) =

∑m
j=1 τijyij +

∑t
k=1 πk∑t

k=1 π2
k Var(ϵk)+γ 2 Var(u)

(π′ȳ + γ u)

1
Var(θ ) +

∑m
j=1 τij +

(
∑t

k=1 πk)2∑t
k=1 π2

k Var(ϵk)+γ 2 Var(u)

nd

ar(θ |y i, π
′ȳ + γ u) =

1
1

Var(θ ) +
∑m

j=1 τij +
(
∑t

k=1 πk)2∑t
k=1 π2

k Var(ϵk)+γ 2 Var(u)

.

Denote τmin = min1≤i≤n,1≤j≤m τij > 0. Then we see that for any
∈ Rt

+
, γ ∈ R+ and k = 1, . . . , t ,

(π, γ )k ≥ Var(θ |y)

[
n∑

i=1

1
ρi

]−1
τmin

max1≤i≤n ρi
=: η1 > 0

nd

(π, γ ) ≥ Var(θ |y)

[
n∑

i=1

1
ρi

]−1

=: η2 > 0,

where f (π, γ )k denotes the kth component of vector f (π, γ ). By
Lemma 1 in the Appendix, f and g are continuous at every (π, γ )
with γ > 0.7 Using Brouwer’s fixed-point theorem with the
restriction of functions f and g to the subdomain [η1, B]t ×[η2, B],
we get a regular, linear rational expectations equilibrium. □

Remark 1. Theorem 1 establishes the nonzero of the limit points
of {γ ∗

ℓ } indirectly by first showing the boundedness of the se-
quence {Q ∗

ℓ }, then using the relation π∗

ℓ = γ ∗

ℓ Q
∗

ℓ and the nonzero
of the limit points of {π∗

ℓ}. Differently, under some conditions

7 The continuity is guaranteed by the special structure of signals being a sum
of the fundamental and an independent noise. So unlike the proof of Theorem 1,
here an auxiliary normal random variable v is no longer needed to be introduced
in price functions.
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Theorem 2 directly shows that every γ ∗

ℓ is strictly larger than
some positive number. Consequently, any limit point of {γ ∗

ℓ } is
strictly positive and the resulting equilibrium is thus regular. The
method used here also differs from the one in Lou r⃝ al. (2019)
which establishes the regularity of linear equilibrium based on
the explicit expression γ = γ (Q ), which is a nonlinear function of
some fixed point Q , together with some properties of the fixed-
point equation (similar to (12)) that the fixed point Q satisfies
(refer to the proof of Proposition 2 in Lou r⃝ al. (2019) for more
details).

Remark 2. For any exogenously given signals yi = θ + ϵi
(where the noise terms ϵi’s are mutually independent), when
traders share signals with their neighbors in a social network, the
resulting new signals of traders satisfy the second condition in
Theorem 2.

As a byproduct of the newly developed approach, we present
an information aggregation result at the end of this section,
which recovers Proposition 5 in Lou r⃝ al. (2019). The informa-
tion aggregation result reveals that the equilibrium price is able
to aggregate in a good manner the diverse information in the
economy.

Theorem 3. For any linear equilibrium price p, it holds that
Cov(θ, p) ≥ 0, and the strict inequality holds if and only if Cov
(θ, y i) ̸= 0 for some i.

Proof. Recall the alternative form of the market-clearing condi-
tion

p =

[
n∑

i=1

1
ρi Var(θ |y i, p)

]−1 ( n∑
i=1

E(θ |y i, p)
ρi Var(θ |y i, p)

+ u

)
. (15)

Taking the covariance Cov(θ, ·) of both sides of (15), we have

ov(θ, p) =

[
n∑

i=1

1
ρi Var(θ |y i, p)

]−1 n∑
i=1

Cov(θ,E(θ |y i, p))
ρi Var(θ |y i, p)

= Var(θ )

[
n∑

i=1

1
ρi Var(θ |y i, p)

]−1 n∑
i=1

1 −
Var(θ |yi,p)

Var(θ )

ρi Var(θ |y i, p)

= Var(θ )

⎛⎝1 −

[
n∑

i=1

1
ρi Var(θ |y i, p)

]−1 n∑
i=1

1
ρi Var(θ )

⎞⎠
≥ 0, (16)

where the first equality uses the independence of θ and u, the
second uses the relation Cov(θ,E(θ |y i, p)) = Var(E(θ |y i, p))
(Lemma 5 in the Appendix) and Lemma 3, and the inequality
follows from the relation Var(θ |y i, p) ≤ Var(θ ) (see Lemma 3
again). The weak inequality follows.

Observing (16), we immediately conclude that Cov(θ, p) = 0
if and only if Var(θ |y i, p) = Var(θ ) for every i. It follows from
Lemma 1 that Var(θ |y i, p) = Var(θ ) if and only if Cov(θ, y i) = 0
for every i, so the conclusion about strict inequality follows. □

Remark 3. The equality (16) presents an intrinsic relationship
between the covariance Cov(θ, p) and the model parameters such
as the risk aversion coefficients, the prior variance and the poste-
rior conditional variance of the fundamental. It can be seen from
(16) that the covariance Cov(θ, p) is upper bounded by the prior
variance Var(θ ). An interesting observation from (16) is that when
some trader’s signal y i is sufficiently informative in the sense that
Var(θ |y ) is close to zero, the covariance Cov(θ, p) will be close to
i
its upper bound Var(θ ). This means that the equilibrium price is
able to aggregate in a good manner the diverse information in the
economy.

4. An extended model with heterogeneous valuations

We now consider an extension of the model in Section 2 that
traders valuate the risky asset heterogeneously. Each trader i’s
valuation of the risky asset is described by a random variable
θi, which is normally distributed with mean zero and positive
variance. Except for the heterogeneity of traders’ valuations, all
the settings in the extended model are the same as that in the
economy in Section 2. Under the heterogeneous-valuation setting,
the optimal demand for the risky asset by trader i is given by

x∗

i =
E(θi|y i, p) − p
ρi Var(θi|y i, p)

,

nd the market-clearing condition becomes
n

i=1

E(θi|y i, p) − p
ρi Var(θi|y i, p)

+ u = 0.

Similar to Assumption 1 for the homogeneous-valuation econ-
omy in Section 2, here we also impose a mild assumption that the
aggregate signal cannot fully pin down any trader’s valuation.

Assumption 2. For every i, Var(θi|y) > 0.

When traders valuate the risky asset homogeneously, i.e., θi =

θj for all i and j, the economy considered in this section coin-
cides with the one in Section 2. We next show that the pro-
posed approach in Theorems 1 and 2 can also be applied here
to solve the existence and regularity of linear equilibrium in
heterogeneous-valuation economies.

Theorem 4. Consider the heterogeneous-valuation economy in this
section with Assumption 2. Suppose Var(u) > n

∑n
i=1

Var(θi)
ρ2
i Var(θi|y)2

.

hen there exists a regular, linear rational expectations equilibrium.

roof. When
∑n

i=1
E(θi|yi)

ρi Var(θi|yi)
= 0, we can see that p =

1∑n
i=1 ρi Var(θi|yi)

]−1u is an equilibrium price. Note that

ar(θi|y i) ≥ Var(θi|y) > 0

or every i by Assumption 2. We next assume that
∑n

i=1
E(θi|yi)

ρi Var(θi|yi)

= 0, and borrow the arguments and follow the notations used in
he proof of Theorems 1 and 2.

Define three functions f ℓ : Rt+1
→ Rt , gℓ : Rt+1

→ R
nd hℓ : Rt+1

→ R such that for any π ∈ Rt and γ ∈ R,
f ℓ(π, γ )′, gℓ(π, γ ), hℓ(π, γ ))′ is the unique vector that satisfies
he following equality almost surely

n∑
i=1

1
ρi Var(θi|y i, pℓ(π, γ ))

]−1 ( n∑
i=1

E(θi|y i, pℓ(π, γ ))
ρi Var(θi|y i, pℓ(π, γ ))

+ u

)
= f ℓ(π, γ )′ȳ + gℓ(π, γ )u + hℓ(π, γ )v. (17)

Similar to the arguments used in the proof of Theorem 1, we
an show that for every ℓ ∈ N, f ℓ and gℓ are uniformly bounded
ver Rt+1, continuous at every point in Rt+1 and then have a fixed
oint (π∗

ℓ, γ
∗

ℓ ) such that f ℓ(π∗

ℓ, γ
∗

ℓ ) = π∗

ℓ and gℓ(π∗

ℓ, γ
∗

ℓ ) = γ ∗

ℓ by
using Brouwer’s fixed-point theorem. Let (π∗, γ ∗) be the limit of
he sequence {(π∗

ℓ, γ
∗

ℓ )} (otherwise take a subsequence of N due
o the boundedness of {(π∗

ℓ, γ
∗

ℓ )} by the uniform boundedness of
and g ).
ℓ ℓ



Y. Lou and S. Wang / Journal of Mathematical Economics 90 (2020) 119–126 125

o
i

v

i

|

V

(∑
w
e∑
a∑
s
d
T∑
g
t
u
v
s
e

5

r
a
r
e
t
a
h
a

D

c
t

A

f
c
v
4

L
p(
t

E

T

V

Let vℓ(π∗

ℓ, γ
∗

ℓ ) denote the coefficient on u in the expression∑n
i=1

E(θi|yi,pℓ(π∗
ℓ
,γ ∗

ℓ
))

ρi Var(θi|yi,pℓ(π∗
ℓ
,γ ∗

ℓ
)) ; refer to the explanations on the existence

f the term on u in Theorem 2. Applying similar arguments given
n the proof of Theorem 2, we get

ℓ(π∗

ℓ, γ
∗

ℓ )
2 Var(u) ≤ Var

(
n∑

i=1

E(θi|y i, pℓ(π∗

ℓ, γ
∗

ℓ ))
ρi Var(θi|y i, pℓ(π∗

ℓ, γ
∗

ℓ ))

)

≤ n
n∑

i=1

Var(θi)
ρ2
i Var(θi|y)2

,

mplying that

vℓ(π∗

ℓ, γ
∗

ℓ )|≤

√n
∑n

i=1
Var(θi)

ρ2
i Var(θi|y)2

Var(u)
< 1

for any ℓ ∈ N, where the strict inequality follows from the con-
dition on Var(u) given in this theorem. Hence, by the preceding
inequality and (17), we have for every ℓ ∈ N,

γ ∗

ℓ ≥

[
n∑

i=1

1
ρi Var(θi|y)

]−1
⎛⎜⎝1 −

√n
∑n

i=1
Var(θi)

ρ2
i Var(θi|y)2

Var(u)

⎞⎟⎠ > 0.

Hence, as the limit point of {γ ∗

ℓ }, γ ∗ > 0.
Furthermore, we also claim that π∗

̸= 0 because otherwise,
with the fact that γ ∗ > 0 in mind and applying Lemma 2, we
have E(θi|y i, pℓ(π∗

ℓ, γ
∗

ℓ )) → E(θi|y i, γ
∗u) = E(θi|y i) almost surely.

Then it follows from Lemma 3 that Var(θi|y i, pℓ(π∗

ℓ, γ
∗

ℓ )) →

Var(θi|y i). Consequently, first taking the limit of both sides of (17)
and then matching the coefficients on y give

∑n
i=1

E(θi|yi)
ρi Var(θi|yi)

= 0,

contradicting the condition
∑n

i=1
E(θi|yi)

ρi Var(θi|yi)
̸= 0 assumed at the

beginning of the proof. As a result, π∗
̸= 0.

Similar to the arguments used in the proof of Theorem 1, we
have

E(θi|y i, pℓ(π∗

ℓ, γ
∗

ℓ )) → E(θi|y i, (π
∗)′ȳ + γ ∗u),

ar(θi|y i, pℓ(π∗

ℓ, γ
∗

ℓ )) → Var(θi|y i, (π
∗)′ȳ + γ ∗u)

and hℓ(π∗

ℓ, γ
∗

ℓ ) → 0 as ℓ → ∞. Taking the limit of both sides of
(17) gives a regular, linear rational expectations equilibrium. □

Remark 4. Lou r⃝ al. (2019) first show the existence and then the
regularity of linear equilibrium for their homogeneous-valuation
economy. Unlike it, the existence and regularity of linear equilib-
rium for heterogeneous-valuation economies are shown simulta-
neously (under the condition that the variance of noise trade is
large).

Theorem 4 shows that the proposed approach in Section 2 can
also be used to prove the existence and regularity of linear equi-
librium in heterogeneous-valuation economies. The equilibrium
existence of the homogeneous-valuation economy (in absence
of idiosyncratic noise) in Lou r⃝ al. (2019) 8 is shown by first
constructing an auxiliary sequence of uniformly bounded func-
tions, then getting a fixed point for every such a function, and
finally taking the limit of this sequence of fixed points (which
is bounded) to get a fixed point of the original function which
is constructed based on coefficient matching of market-clearing
conditions. The boundedness of the sequence of fixed points

8 The homogeneous-valuation economy in Lou r⃝ al. (2019) (without id-
iosyncratic noise) is mathematically equivalent to the economy in Section 2,
as explained earlier.
depends crucially on the following property: For any vector µ =

µ′

1, . . . ,µ
′
n)

′
∈ Rnm, it holds that

n

i=1

µ′

i (Var(µ)Cov(θ, y i) − Cov(µ, θ )Cov(µ, y i)) = 0

ith θ being the fundamental of the risky asset, where the
quality follows from the two relations
n

i=1

µ′

iCov(θ, y i) = Cov(µ, θ )

nd
n

i=1

µ′

iCov(µ, y i) = Var(µ);

ee Lemma 2 in Lou r⃝ al. (2019). However, the above property
oes not hold for heterogeneous-valuation economies in general.
o be more precise,
n

i=1

µ′

i (Var(µ)Cov(θi, y i) − Cov(µ, θi)Cov(µ, y i))

enerally does not equal zero regardless of whether the condi-
ion on Var(u) in Theorem 4 holds. As a summary, the method
sed in the proof of equilibrium existence for the homogeneous-
aluation economy in Lou r⃝ al. (2019) cannot be applied here to
olve the equilibrium existence in the heterogeneous-valuation
conomy considered here.

. Concluding remarks

A new approach was proposed to show the existence and
egularity of linear equilibrium in the REE economy in Lou r⃝
l. (2019). Different from the existing method which essentially
equires to find a fixed point of a system of nonlinear algebraic
quations, the new approach is operated directly on an alterna-
ive form of market-clearing conditions. The new approach can
lso be used to show the existence and regularity of an extended
eterogeneous-valuation economy where the method in Lou r⃝
l. (2019) fails to work.
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ppendix

In this appendix, we introduce several useful lemmas. The
irst one characterizes the conditional distribution of some of the
omponents of a multivariate normal random variable while the
alues of the other components are given; see Chapter 5, Section
in DeGroot (1970) for more details.

emma 1. For a normal random vector (z, s′)′ with mean zero and
ositive definite variance–covariance matrix

Var(z) Cov(z,s)′
Cov(z,s) Var(s)

)
,

he conditional mean is given by

(z|s) = Cov(z, s)′Var(s)−1s.

he conditional variance is a constant and given by

ar(z|s) = Var(z) − Cov(z, s)′Var(s)−1Cov(z, s).
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Lemma 2. Let z be a normal random variable with positive
variance, x and s ∈ Rm be two normal random vectors, all with
mean zero, and {ak} be a vector sequence in Rm with limk→∞ ak =

∗. Suppose the variance–covariance matrix of (x′, a′
∗
s)′ is positive

efinite. Then

lim
→∞

E(z|x, a′

ks) = E(z|x, a′

∗
s)

lmost surely.

roof. Follows directly from Lemma 1 and the fact that if the
atrix sequence {Ak} (where each Ak is invertible) converges to
n invertible matrix A∗, then limk→∞ A−1

k = A−1
∗

. □

The first part of the next lemma comes from Theorem 7 on
age 159 in Mood et al. (1974), which is referred to as the law of
otal variance in the literature, and the second part comes from
he first part and Lemma 1.

emma 3. For any random variable z, we have

ar(z) = Var(E(z|·)) + E(Var(z|·)).

n particular, when all involved random variables are normally
istributed, the conditional variance Var(z|·) is a constant, and
onsequently, the above formula in this lemma reduces to

ar(z) = Var(E(z|·)) + Var(z|·).

The next one is due to Lou r⃝ al. (2019) (see Lemma 1 therein).

emma 4. For each i, when Cov(θ, y i) ̸= 0, there exists ϵi > 0
uch that for any linear price function p, it holds that

< Var(θ |y) ≤ Var(θ |y i, p) ≤ Var(θ ) − ϵi.

Lemma 5. For each i, when Cov(θ, y i) ̸= 0, there exists ϵi > 0
such that for any linear price function p, it holds that

Cov(θ,E(θ |y i, p)) = Var(E(θ |y i, p)) > ϵi.

Proof. The equality follows from the following series of equalities

Cov(θ,E(θ |y i, p)) = E(θE(θ |y i, p)) = E(E(θE(θ |y i, p)|y i, p))

= E(E(θ |y i, p)
2) = Var(E(θ |y i, p)),
where the first and last equalities follow from the definitions
of covariance and variance, and the assumption that the mean
of θ equals zero, the second from the definition of conditional
expectation, and the third from the property ‘‘pulling out what’s
known’’ of conditional expectation. By Lemma 3 in this Appendix,
we have

Var(E(θ |y i, p)) = Var(θ ) − Var(θ |y i, p). (18)

Then the strict inequality follows from (18) and Lemma 4. □
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