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Abstract
The aim of this manuscript is to analyze the monotonicity and limit properties of the
optimal investment strategy in a behavioral portfolio choice model under cumulative
prospect theory over risk aversion coefficient, loss aversion coefficient, and the market
opportunity. We show that the optimal investment strategy is nonincreasing of the loss
aversion coefficient, and strictly increasing of the Sharpe ratio for normal distributions.
The monotonicity properties over risk aversion coefficient depend on the position of
the investor and the goodness of the actual and perceived market. The piecewise-
linear utility is also discussed. An interesting finding is that when the excess return
follows an elliptical distribution, the optimal investment strategy over small mean for
piecewise-power and piecewise-linear utility exhibits different limit behavior.

Keywords Cumulative prospect theory (CPT) · Behavioral portfolio choice (BPC) ·
Monotonicity properties

1 Introduction

Cumulative prospect theory (CPT) has became a powerful tool to capture investors’
psychology in decision-making [7,17]. Several single-period behavioral portfolio
choice (BPC) models under CPT have been studied in the literature [2,5,8,9,11]. He
andZhou [5] consider a quite general setting and derive the optimal investment strategy
(OIS) for two special cases with a piecewise-linear-utility and zero-relative-wealth.
He and Zhou [5] also show that the CPT preference value function is not concave on
either the positive or the negative half space, and consequently, it is difficult to present
a closed-form solution for BPC models in general.
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1732 Y. Lou

Because of the non-concavity of CPT preference value functions, most of the liter-
ature aims to analyze the properties of OISs or obtain semi-closed OISs. For instance,
Bernard and Ghossoub [2] consider a no-shorting restriction and probability distor-
tion, where the reference point corresponds to the terminal wealth when investing the
entire initial wealth in the risk-free asset, and show that the OIS is a function of a gen-
eralizedOmega measure of the distribution of the excess return on the risky asset over
the risk-free rate. Pirvu and Schulze [11] investigate a model with multiple risky assets
which follow a joint elliptical distribution, and obtain a semi-closed OIS by transfer-
ring the multi-dimensional optimization problem into a one-dimensional optimization
problem. Minsuk and Pirvu [10] consider a model with multiple risky assets which
follow a Skewed t distribution, and obtain a semi-closed OIS by reducing the multi-
dimensional optimization problem into two one-dimensional optimization problems.
Lou et al. [9] try to identify the investment direction, i.e., one investor should optimally
long or short the stock. Specifically, Lou et al. [9] show that for two-point distribu-
tions, when an investor is in a gain position, the investment direction depends only
on whether the mean of the excess return is positive or negative. However, when an
investor is in a loss position, the investment direction no longer depends on the actual
market opportunity, but the perceived market opportunity, which is jointly described
by this investor’s risk aversion coefficient and the market condition. In addition, Lou
et al. [9] also show that one CPT-investor will optimally long (short) the stock when
the excess return follows an elliptical distribution and has a positive (negative) mean
no matter whether this investor is in a gain or loss position. Following [9], Lou [8]
continues to identify the investment direction for general distributions and show that
the result about two-point distributions in the case of gain positions still holds for
general distributions when the CPT-investor is sufficiently loss-averse, but no longer
holds in the case of loss positions by constructing counterexamples.

Besides single-periodmodels,multi-period and continuous-timeBPCmodels under
CPT are also studied in the literature [3,4,6,14–16]. Jin and Zhou [6] formulate a
general continuous-time BPC model in a complete market. In the same vein as [5],
Carassus and Rasonyi [3] establish easily verifiable and interpretable conditions for
the well-posedness of an incomplete discrete-time multi-period BPC model. Shi et
al. [14] consider discrete-time multi-period BPC models and derive semi-analytical
optimal policieswhere the reference point is fixed as a constant. Shi et al. [15] propose a
partially updated reference point formation rule and obtain a semi-analytical solution.
Deng and Pirvu [4] consider a discrete-time multi-period BPC model with a portfolio
constraint. Strub and Li [16] analyze and compare the OISs for amulti-period discrete-
time BPC problem with loss-aversion and time-varying reference points for different
reference point updating rules.

Due to the difficulty of deriving explicit OISs pointed out by [5], in this paperwe aim
to characterize the monotonicity and limit properties of the OIS of the single-period
BPC model in [9] over the model parameters, for instance, the risk aversion coeffi-
cient, loss aversion coefficient and the market opportunity. Lou et al. [9] establish the
piecewise-linear structure of theOIS. To be specific, it reveals that theOIS is piecewise
linear with respect to the relative wealth with vertex at zero. The piecewise-linearity
coefficient, which depends only on the risk aversion coefficient, the loss aversion coef-
ficient, and the market opportunity, takes two different values depending on the sign of
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Some properties of the optimal investment strategy 1733

the relative wealth. Because of the piecewise-linear structure, the investigation of the
properties of OISs is equivalent to analyze the properties of the two piecewise-linearity
coefficients.

To the best of our knowledge, there is no existing work that analyzes the mono-
tonicity and limit properties of OISs under general settings, even though He and
Zhou [5] present some monotonicity analysis of OISs over loss aversion coefficient
for piecewise-linear utility functions. Knowing the monotonicity and limit properties
of OISs is important because it can help CPT-investors better understand their posi-
tions and make better investment decisions under different market circumstances. An
interesting finding of this article is that when the risky asset follows an elliptical distri-
bution, the optimal investment strategy over small mean of the excess return exhibits
different limit behavior. This finding demonstrates that piecewise-power utility and
piecewise-linear utility are two qualitatively different utility functions to describe and
characterize CPT-investors’ decision-making.

2 The behavioral portfolio choice model

Consider the single-period behavioral portfolio choice model studied by He and
Zhou [5] and Lou et al. [9]. The financial market under consideration consists of
one risk-free account and one risky asset (stock) with stochastic return R̃. Throughout
this paper, we assume that the risk-free asset does not generate interests for simplicity.
Let W0 be the initial wealth of an individual investor at the beginning of this time
period, and θ the amount that she invests in the stock. Then, the balance W0 − θ goes
to the risk-free account. The investor’s total wealth at the end of this period can be
expressed asW0+(R̃−1)θ. In our study, shorting is allowed in this market. We define
R := R̃−1 as the excess return which follows a cumulative distribution function F(·)
with the no-arbitrage assumption of 0 < P

(
R < 0

)
< 1 and 0 < P

(
R > 0

)
< 1.

We assume that the investor in the market has CPT preferences. We denote her
reference point by B, which serves as a base point to separate gains from losses at
the end of the investment period, and express her S-shaped piecewise-power utility
function as suggested in [17],

u(x) =
{
xα, x ≥ 0;
−K (−x)α, x < 0,

(1)

where K > 1 is the loss aversion coefficient and 0 < α < 1 is the risk aversion
coefficient.1 Here we assume that there is no probability distortion for analytical
simplicity.

Let B̄ = W0 − B denote the relative wealth of the investor. The CPT preference
value, defined as

E[u(W0 + Rθ)] =: V (θ),

1 In Sect. 4 we will consider the piecewise-linear utility, i.e., α = 1.
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1734 Y. Lou

of the terminal wealth W0 + Rθ is given by

V (θ) =
∫ +∞

− B̄
θ

(θ t + B̄)αdF(t) − K
∫ − B̄

θ

−∞
(−θ t − B̄)αdF(t) for θ > 0, (2)

V (θ) =
∫ − B̄

θ

−∞
(θ t + B̄)αdF(t) − K

∫ +∞

− B̄
θ

(−θ t − B̄)αdF(t) for θ < 0, (3)

and

V (0) =
{
B̄α, B̄ ≥ 0;
−K |B̄|α, B̄ < 0.

The investor tries to find the OIS θ∗ which solves the following optimization problem

V (θ∗) = max
θ∈R V (θ). (4)

We make the following three assumptions throughout this paper where the only
exception is that we will also consider two-point distributions when analyzing the
monotonicity property of the OIS over risk aversion coefficient in the next section.

Assumption 1 Suppose that the cumulative distribution function F(·) of the excess
return R is absolutely continuous with a probability density function f (·) which sat-
isfies that f (t) = O(|t |−2−ε) for sufficiently large |t |,2 where ε > 0.

Assumption 2 Suppose the following well-posedness condition holds,

K > K0, K0 � max

{ ∫ +∞
0 tαdF(t)

∫ 0
−∞ |t |αdF(t)

,

∫ 0
−∞ |t |αdF(t)
∫ +∞
0 tαdF(t)

}
. (5)

Assumption 3 Suppose that the optimal solution θ∗ of (4) is unique.

Assumption 1 guarantees that the CPT preference value function V (·) takes a finite
value for any θ ∈ R (see Proposition 1 in [5]). Serval common distributions, e.g., nor-
mal, lognormal and logistic distributions, satisfyAssumption 1. As shown in Corollary
1 in [5], Assumption 2 ensures that the CPT model under consideration is well-posed,
that is, the optimal solution θ∗ is finite. Moreover, Assumption 3 is not restrictive. For
instance, our simulation shows that Assumption 3 is always satisfied when the excess
return follows a normal distribution with a nonzero mean.

The following theorem establishes the piecewise-linear structure of the OIS of (4)
(see Theorem 1 in [9]).

2 For two functions g and h, g(t) = O(h(t)) represents that lim supt→∞ g(t)
h(t) ≤ M for some constant

M > 0, while g(t) = o(h(t)) represents that limt→∞ g(t)
h(t) = 0.

123



Some properties of the optimal investment strategy 1735

Theorem 1 (Piecewise Linear OIS) Consider the behavioral portfolio choice problem
(4). When the relative wealth B̄ = W0 − B = 0, argmaxθ∈R V (θ) = 0, and when
B̄ �= 0, there exists γ ∗, which depends only on α, K , F, and the sign of B̄ (but not the
absolute value of B̄), such that the OIS θ∗ takes the form of

θ∗ = argmax
θ∈R V (θ) = γ ∗ B̄.

The piecewise-linearity result provides great convenience for solving OISs when
the investor’s reference point varies, because in order to obtain the OISs corresponding
to different reference points, it suffices to solve (4) only twice for the two cases of
B̄ = 1 and B̄ = −1, respectively. Denoting the resulting two optimal solutions θ∗ by

γ+, − γ−

respectively (i.e., γ ∗ = γ+ in the case of B̄ = 1 and γ ∗ = γ− in the case of B̄ = −1),
then the OIS must be γ+ B̄ for any positive B̄ and γ− B̄ for any negative B̄.

3 Main results

Because we are unable to obtain an explicit form of γ± for general distributions of
excess returns,3 we will explore in this paper the monotonicity and limit properties
of γ± over the model parameters such as risk aversion coefficient, loss aversion coef-
ficient, and the market opportunity in terms of the mean of the excess return. In the
rest of this paper, including all the proofs, the notation γ+(·) indicates a function of
some specified variable(s) while keeping all other parameters fixed. Similar notations
are also used for γ−(·), θ∗(·), V (·), f (·) and F(·).

Firstly, although it is not easy to characterize how γ+ and γ− vary as a function of
the risk aversion coefficient α for general distributions, we do find their relationship for
two-point distributions. We use T (a0; p0; a1; p1) to denote a two-point distribution,
which takes two values a0, a1 with respective positive probability p0, p1, where
a0 < 0 < a1, and p0 + p1 = 1. Theorem 1 in [9] presents an explicit form of γ+ and
γ− in the presence of two-point distributions:

γ+ =
1 −

a1|a0 | +1
(

a1 p1|a0 |p0
) 1
1−α + a1|a0 |

|a0| , if a1 p1 �= |a0|p0;

3 Corollary 2 in [5] shows that the CPT preference value function V (·) is nonconcave on either R+ or R−.
The nonconcavity of CPT preference value function brings greater difficulty in solving the optimization
problem (4) analytically (see the statements in Section 5 in [5]).
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γ− =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|a0 |
a1

+1

(
K

|a0 |p0
a1 p1

) 1
1−α − |a0 |

a1

+1

−a1
, if aα

1 p1 > |a0|α p0;
a1|a0 | +1

(
K

a1 p1|a0 |p0
) 1
1−α − a1|a0 |

+1

|a0| , if aα
1 p1 < |a0|α p0.

(6)

Proposition 1 Suppose the excess return R ∼ T (a0, p0; a1, p1)and K > sup
{ aα

1 p1|a0|α p0 ,|a0|α p0
aα
1 p1

, 0 < α < 1
}
. Then we have

(i) γ+(·) is strictly increasing (decreasing) of α on (0, 1) if a1 p1 > |a0|p0 (a1 p1 <

|a0|p0).
(ii) γ−(·) is strictly increasing (decreasing) of α on (0, 1) if aα

1 p1 > |a0|α p0 for any
0 < α < 1 (aα

1 p1 < |a0|α p0 for any 0 < α < 1).

Proof This is straightforward from the expression (6) for two-point distributions. 
�
Proposition 1 shows that the monotonicity properties over risk aversion coefficient

for two-point distributions depend on the position of the investor and the goodness of
the actual and perceivedmarket.When the investor is in a gain position, themonotonic-
ity property depends on whether the actual market is good, i.e., the mean of the excess
return is positive or negative. When an investor is in a loss position, the monotonicity
property depends on the perceived market opportunity, which is jointly described by
the investor’s risk aversion coefficient and the market condition.

In decision theory, the scalar − xU ′′(x)
U ′(x) is defined as a measure of the relative risk

aversion of the utility function U . A well-known result in [1,12] indicates that in a
single-period market (with a positive mean of the excess return) consisting of one
risky asset and one risk-free asset, in which investors maximize their expected utility,
a more risk averse investor (i.e., with a larger relative risk aversion) will invest a lower
proportion of the portfolio in the risky asset. In our settingwith a two-point distribution
where the utility is represented by the one in (1) and the relative wealth is positive,
our monotonicity result (the first part (i) of Proposition 1) reveals that an investor with
larger α should hold a higher proportion of the portfolio in the risky asset. Indeed,
the “relative risk aversion” of the piecewise-power utility u equals 1 − α except at
the point 0, which implies that the investor with larger α is less risk averse or more
risk seeking. Our monotonicity result under the framework of CPT for gain-position
investors is thus consistent with that under Expected Utility Theory (EUT) given in
[1,12].

Secondly, we consider the monotonicity properties of γ+ and γ− over loss aversion
coefficient K .

Proposition 2 Suppose that the optimal solution of (4) is positive for both cases of
B̄ > 0 and B̄ < 0 (i.e., γ+ > 0, γ− < 0).

(i) Suppose V (·) is nondecreasing on (0, θ∗]. Then γ+(·) is nonincreasing of K on
(K0,+∞). If additionally, the excess return R is unbounded from below (i.e.,
F(t) > 0 for any t < 0), then γ+(·) is strictly decreasing of K on (K0,+∞).
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Some properties of the optimal investment strategy 1737

(ii) Suppose V (·) is nondecreasing on (0, θ∗]. Then γ−(·) is nondecreasing of K on
(K0,+∞). If additionally, either the excess return R is unbounded from above
(i.e., F(t) < 1 for any t > 0), or the mean of R is positive, then γ−(·) is strictly
increasing of K on (K0,+∞).

Proof (i). Let B̄ = 1. For any K1, K2 with K0 < K1 < K2, from (2) we have that for
any θ > 0,

∂V (θ, K1)

∂θ
≥ ∂V (θ, K2)

∂θ
.

Combing the preceding relation with the nondecreasingness of V (·) on (0, θ∗], we
obtain that γ+(·) is nondecreasing of K on (K0,+∞). Moreover, if R is unbounded
from below, the second inequality becomes strict and consequently, the strict increas-
ingness holds.

(ii). Let B̄ = −1. By the first-order condition, the optimal solution θ∗(K1), which
is positive by hypothesis, satisfies ∂V (θ∗(K1),K1)

∂θ
= 0, i.e.,

∫ +∞
1

θ∗(K1)

[θ∗(K1)t − 1]α−1tdF(t) + K1

∫ 1
θ∗(K1)

−∞
[−θ∗(K1)t + 1]α−1tdF(t) = 0.

As a result,

∫ 1
θ∗(K1)

−∞
[−θ∗(K1)t + 1]α−1tdF(t) ≤ 0,

and so when K2 > K1,

∫ +∞
1

θ∗(K1)

[θ∗(K1)t − 1]α−1tdF(t) + K2

∫ 1
θ∗(K1)

−∞
[−θ∗(K1)t + 1]α−1tdF(t) ≤ 0,

i.e., ∂V (θ∗(K1),K2)
∂θ

≤ 0. By the monotonicity assumption of V (·, K2) on (0, θ∗(K2)],
we have θ∗(K2) ≤ θ∗(K1). Therefore, θ∗(·) is nonincreasing and consequently, γ−(·)
is nondecreasing of K on (K0,+∞).

When R is unbounded from above,

∫ +∞
1

θ∗(K1)

[θ∗(K1)t − 1]α−1tdF(t) > 0,

and as a result,

∫ 1
θ∗(K1)

−∞
[−θ∗(K1)t + 1]α−1tdF(t) < 0.
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Note that the inequality in the preceding relation is strict and hence the monotonicity
of θ∗(·) is strict. When E[R] > 0, it also holds that

∫ +∞
1

θ∗(K1)

[θ∗(K1)t − 1]α−1tdF(t) > 0

and then the monotonicity follows. In fact, otherwise, the excess return R is bounded
from above, i.e., R ≤ 1

θ∗(K1)
= 1

|γ−| with probability one. Consequently, by Lemma 2

in [9],4 we have |γ−| × 1
|γ−| > 1, raising a contradiction. 
�

Corollary 1 in [9] shows that when the excess return R follows an elliptical distri-
bution (see the definition later), the optimal solution of (4) is positive when the mean
of R is positive no matter B̄ > 0 or B̄ < 0. However, for general distributions it
is difficult to identify the relationship between the positiveness/negativeness of the
optimal solution of (4) and the market opportunity.

Themonotonicity result on loss aversion coefficientK has been revealed inTheorem
5 of [5] for piecewise-linear utilities. The monotonicity results in Proposition 2 reveal
that when an investor is more loss averse, she should hold lower proportion of the
portfolio in the risky asset to decrease the risk of loss caused by the risky asset. This
is intuitive.

A random variable X is said to follow an elliptical distribution E(μ, σ, g) with
μ ∈ R and σ ∈ R+, if its probability density function has the form:

f (t) = bg
( (t − μ)2

σ 2

)
,

where b > 0 is a constant, g : [0,+∞) → [0,+∞) is a Lebesgue measurable,
nonnegative, strictly decreasing function, which is called density generator. The class
of elliptical distributions includes many well-known distributions, e.g., normal distri-

butions (g(t) = e− 1
2 t ), Student’s t distributions (g(t) = (1 + t

ν
)− 1+ν

2 , ν ≥ 1 is an

integer), and logistic distributions (g(t) = e
√
t

(1+e
√
t )2

).

In the following discussions of this section, we assume that the excess return R
follows an elliptical distribution with a finite and positive mean μ, finite variance,
which coincides with σ 2 up to a constant. Corollary 1 in [9] informs us that γ+ > 0
and γ− < 0. Note that for an elliptical distribution with a positive mean,

∫ +∞
0 tαdF(t)

∫ 0
−∞ |t |αdF(t)

> 1,

and the piecewise-linearity coefficients γ+ and γ− depend on the parameters μ and σ

only through the Sharpe ratio μ/σ [13]. So the results about the piecewise-linearity
coefficients in the following proposition also apply to the situation that σ is increasing
(to positive infinity) when keeping μ fixed.

4 Specifically, it shows that if the excess return R has a positive mean and is bounded from above, i.e.,
E[R] > 0 and R ≤ M with probability one for some M > 0, then |γ−|M > 1.
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Proposition 3 Suppose that the excess return R ∼ E(μ, σ, g), μ > 0, and

K > sup
0<μ≤μ̄

∫ +∞
0 tαdF(t, μ)

∫ 0
−∞ |t |αdF(t, μ)

for some μ̄ > 0. Then we have

(i) lim0<μ→0 γ+(μ) = 0;
(ii) lim0<μ→0 γ−(μ) < 0 if f (t) = o(|t |−3) for sufficiently large |t |;
(iii) If the excess return R follows a normal distribution N (μ, σ ) and V (·) is strictly

decreasing of θ on [θ∗,+∞), then γ+(·) is strictly increasing of μ, and γ−(·)
is strictly decreasing of μ on (0, μ̄];

(iv) The maximum CPT preference value maxθ∈R V (θ, ·) is strictly increasing of μ

on (0, μ̄].
Proof Let V (θ, μ) be the CPT preference value function with the emphasis that it is
a function of the mean μ of the excess return.

(i) We show the conclusion by contradiction. Hence suppose lim sup0<μ→0 γ+(μ)

> 0. Then there exist w > 0 and infinitely many sufficiently small μ > 0 such that
the optimal solution of (4) with B̄ = 1 is not less thanw. Note that the CPT preference
value of the optimal solution is not less than B̄α = 1 (because it is not less than the
CPT preference value at zero). However, when μ = 0, for any θ > 0,

V ′(θ, 0)

α
=

∫ +∞

− 1
θ

(θ t + 1)α−1t f (t, 0)dt + K
∫ − 1

θ

−∞
(−θ t − 1)α−1t f (t, 0)dt

<

∫ +∞

− 1
θ

(θ t + 1)α−1t f (t, 0)dt +
∫ − 1

θ

−∞
(−θ t − 1)α−1t f (t, 0)dt

=
∫ +∞

0

[
(θ t + 1)α−1 − |θ t − 1|α−1]t f (t, 0)dt

< 0,

where the first inequality follows from the fact K > 1 and the second inequality from
the two relations (θ t + 1)α−1 < |θ t − 1|α−1 and f (t, 0) = f (−t, 0). Therefore, for
any θ ≥ w,

V (θ, 0) ≤ V (w, 0) ≤ V
(w

2
, 0

) − ςw

2
≤ V (0, 0) − ςw

2
= 1 − ςαw

2
,

where

ς = inf
w
2 ≤θ≤w

∫ +∞

0
|(θ t + 1)α−1 − |θ t − 1|α−1|t f (t, 0)dt > 0.

This along with the continuity of V (θ, μ) in μ leads to a contradiction. Thus,
lim0<μ→0 γ+(μ) = 0.
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1740 Y. Lou

(ii) It suffices to show that when B̄ = −1,

max
θ∈[0,+∞)

V (θ, 0) > V (0, 0) = −K .

Note that for θ > 0,

V ′(θ, 0)

α
=

∫ +∞
1
θ

(θ t − 1)α−1t f (t, 0)dt + K
∫ 1

θ

−∞
(−θ t + 1)α−1t f (t, 0)dt

=
∫ 2

θ

1
θ

(θ t − 1)α−1t f (t, 0)dt + K
∫ 1

θ

1
2θ

(−θ t + 1)α−1t f (t, 0)dt

+
∫ +∞

2
θ

(θ t − 1)α−1t f (t, 0)dt + K
∫ 1

2θ

−∞
(−θ t + 1)α−1t f (t, 0)dt

=: z1(θ) + z2(θ) + z3(θ) + z4(θ).

Some simple computations give

z1(θ) + z2(θ) = O
( 1

θ2
f
(1
θ
, 0

))
,

z′3(θ) + z′4(θ) = 4

θ3
f
(2
θ
, 0

) + (α − 1)
∫ +∞

2
θ

(θ t − 1)α−2t2 f (t, 0)dt

+ K
[

− 1

21+αθ3
f
( 1

2θ
, 0

) + (1 − α)

∫ 1
2θ

−∞
(−θ t + 1)α−2t2 f (t, 0)dt

]
.

Observe that for any M > 0 and θ > 0,

∫ 1
2θ

−∞
(−θ t + 1)α−2t2 f (t, 0)dt ≥

∫ 1
2θ

−M
(−θ t + 1)α−2t2 f (t, 0)dt

≥ (θM + 1)α−2
∫ 1

2θ

−M
t2 f (t, 0)dt,

where the second inequality follows from the two relations (−θ t + 1)α−2 > 1 for
1/(2θ) ≤ t ≤ 0 and (−θ t + 1)α−2 > (θM + 1)α−2 for −M ≤ t ≤ 0. Therefore,

lim
0<θ→0

∫ 1
2θ

−∞
(−θ t + 1)α−2t2 f (t, 0)dt ≥

∫ +∞

−M
t2 f (t, 0)dt

for any M > 0, from which we have

lim
0<θ→0

∫ 1
2θ

−∞
(−θ t + 1)α−2t2 f (t, 0)dt ≥

∫ +∞

−∞
t2 f (t, 0)dt > 0.
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Some properties of the optimal investment strategy 1741

Furthermore,

lim
0<θ→0

∫ +∞
2
θ

(θ t − 1)α−2t2 f (t, 0)dt = 0.

The preceding two relations and the hypothesis f (t) = o(|t |−3) imply that V ′(θ, 0) >

0 for all positive but sufficiently small θ . The conclusion (ii) follows.
(iii) We see that for θ > 0,

∂V (θ, μ)

∂θ
= α

[ ∫ +∞

− B̄
θ

(θ t + B̄)α−1t f (t, μ)dt

+ K
∫ − B̄

θ

−∞
(−θ t − B̄)α−1t f (t, μ)dt

]
, (7)

∂2V (θ, μ)

∂μ∂θ
= α

[ ∫ +∞

− B̄
θ

(θ t + B̄)α−1t(t − μ) f (t, μ)dt

+ K
∫ − B̄

θ

−∞
(−θ t − B̄)α−1t(t − μ) f (t, μ)dt

]
. (8)

Since V (·, μ) achieves its maximum at θ∗(μ), which is positive, ∂V (θ∗(μ),μ)
∂θ

= 0. This
together with (7) and (8) yields

∂2V (θ∗(μ), μ)

∂μ∂θ
= α

( ∫ +∞

− B̄
θ∗(μ)

[θ∗(μ)t + B̄]α−1t2 f (t, μ)dt

+ K
∫ − B̄

θ∗(μ)

−∞
[−θ∗(μ)t − B̄]α−1t2 f (t, μ)dt

)

> 0.

As a result,

∂V (θ∗(μ), μ + ε)

∂θ
>

∂V (θ∗(μ), μ)

∂θ
= 0

when ε > 0 is sufficiently small. The preceding inequality and the monotonicity
assumption of V (·, μ) on [θ∗(μ),+∞) imply that θ∗(μ + ε) > θ∗(μ) for all suffi-
ciently small ε > 0. Thus, γ+(·) is strictly increasing and γ−(·) is strictly decreasing
of μ on (0, μ̄].
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(iv) Let 0 < ν < μ ≤ μ̄. We have for any θ > 0,

V (θ, μ,W0)

=
∫ +∞

−W0−B
θ

(θ t + W0 − B)α f (t, μ)dt − K
∫ −W0−B

θ

−∞
(−θ t − W0 + B)α f (t, μ)dt

=
∫ +∞

−W0+θ(μ−ν)−B
θ

[θs + W0 + θ(μ − ν) − B]α f (s, ν)ds

− K
∫ −W0+θ(μ−ν)−B

θ

−∞
[−θs − W0 − θ(μ − ν) + B]α f (s, ν)ds

= V (θ, ν,W0 + θ(μ − ν)).

Equivalently, the CPT preference value of investing θ in the risky asset with initial
wealth W0 and mean μ equals that with a smaller mean ν, but more initial wealth
W0 + θ(μ − ν). We also have for any fixed θ > 0,

∂V (θ, ν,W0)

∂W0
≥ α

∫ +∞

−∞
|θ t + W0 − B|α−1 f (t, ν)dt > 0,

which leads to

V (θ, μ,W0) = V (θ, ν,W0 + θ(μ − ν)) > V (θ, ν,W0)

due to W0 + θ(μ − ν) > W0. The conclusion (iv) follows. 
�
It is easy to verify that normal, logistic and Student’s t distributions with degree of

freedom ν ≥ 3 satisfy the hypothesis in Proposition 3 (ii). The monotonicity results
in Proposition 3 (iii) and (iv) reveal an intuitive fact that better the actual market in
terms of the mean μ, the higher proportion of the portfolio invested in the risky asset
and the larger CPT preference value. Proposition 3 (i) and (ii) show that the limits of
the OIS for small mean of the excess return for the two cases of positive and negative
relative wealth are different. When one investor is in a gain position, intuitively she is
risk averse on the whole and then will invest smaller and smaller amount in the risky
asset to decrease the risk of loss caused by the risky asset as the market becomes more
neutral (in the sense that the mean of the excess return gets closer and closer to zero).
Whereas when one investor is in a loss position, intuitively she is risk seeking on the
whole and consequently, will invest a certain amount in the risky asset to “break even”
even though the market becomes more neutral.

4 Piecewise-linear utility

Here we present some discussions on the piecewise-linear utility (the utility in (1) with
α = 1), i.e., u(x) = x for x ≥ 0, u(x) = Kx for x < 0. With this special utility, the
well-posedness condition (5) simplifies to
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K > max

{ ∫ +∞
0 tdF(t)

∫ 0
−∞ |t |dF(t)

,

∫ 0
−∞ |t |dF(t)
∫ +∞
0 tdF(t)

}
.

We assume that the actual market is good, i.e., the mean of the excess return is
positive (E[R] > 0). It follows from (3) that for θ < 0,

V ′(θ) =
∫ − B̄

θ

−∞
t f (t)dt + K

∫ +∞

− B̄
θ

t f (t)dt .

We can see that V ′(·) is nonincreasing of θ on (−∞, 0) no matter the relative wealth
B̄ > 0 or B̄ < 0,

lim
0>θ→0

V ′(θ) = E[R] > 0

in the presence of B̄ > 0, and

lim
0>θ→0

V ′(θ) = KE[R] > 0

in the presence of B̄ < 0. Consequently, the optimal solution of (4) must be positive.
Note that when the utility is piecewise linear, the utility function is concave. The above
analysis reveals that the optimal solution of (4) is positive when the actual market is
good with a positive mean of the excess return no matter the relative wealth B̄ is
positive or negative. This is consistent with the classical result in EUT. He and Zhou
[5] derive the OIS for the piecewise-linear utility based on an additional assumption
that the CPT preference value function satisfies that V (θ) ≤ V (0) for any θ < 0. In
fact, our analysis shows that this additional assumption is not necessary.

We also observe that for θ > 0,

V ′(θ) =
∫ +∞

− B̄
θ

t f (t)dt + K
∫ − B̄

θ

−∞
t f (t)dt .

It can be seen that V ′(·) is nonincreasing of θ on (0,+∞) no matter B̄ > 0 or B̄ < 0.
By letting V ′(θ∗) = 0, the piecewise-linearity coefficient takes the following form,

γ+ = − 1

v−
, γ− = − 1

v+
,

where v+, v− are the roots of

∫ +∞

v

t f (t)dt + K
∫ v

−∞
t f (t)dt = 0 (9)

on (0,+∞), (−∞, 0), respectively.
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We conclude that if the probability density function f (·) satisfies the property that
f (t) = 0 for any t ≤ t1 if f (t1) = 0 for some t1 < 0, then the root of (9) on (−∞, 0)
is unique. The uniqueness follows immediately if the excess return R is unbounded
from below, i.e., f (t) > 0 for any t < 0. In fact, the uniqueness also holds if the
excess return is bounded from below. We show this by contradiction. Suppose v1− and
v2− with v1− < v2− < 0 are two roots of (9) on (−∞, 0). Then it follows from (9) and

the fact K > 1 that
∫ v2−
v1−

t f (t)dt = 0, which combines with the previous hypothesis on

the probability density function forces that f (t) = 0 for any t ≤ v2−. Consequently,
any value in the interval

[
− 1

v1−
,− 1

v2−

]
is an optimal solution of (4) in the presence

of B̄ = 1. However, for any θ̄ ∈
(

− 1
v1−

,− 1
v2−

)
, V ′(θ̄) = E[R] > 0, raising a

contradiction. Similarly, we can also show that if the probability density function f (·)
satisfies the property that f (t) = 0 for any t ≥ t2 if f (t1) = 0 for some t2 > 0, the
root of (9) on (0,+∞) is also unique.

Proposition 4 Suppose the utility is piecewise linear (i.e., α = 1). Then we have

(i) γ+(·) is strictly decreasing of K and γ−(·) is strictly increasing of K on (K0,+∞);

Furthermore, if additionally the excess return R follows an elliptical distribution

E(μ, σ, g) with μ > 0, and K > sup0<μ≤μ̄

∫ +∞
0 tαdF(t,μ)

∫ 0
−∞ |t |αdF(t,μ)

for some μ̄ > 0, we have

(ii) |γ−| > γ+;
(iii) γ+(·) is strictly increasing of μ on (0, μ̄], and lim0<μ→0 γ+(μ) = 0;
(iv) γ−(·) is strictly decreasing of μ on (0, μ̄], and lim0<μ→0 γ−(μ) = 0.

Proof Take K2 > K1 > K0. Let v1+ and v2+ be two respective solutions of the Eq. (9)
on (0,+∞) corresponding to K1 and K2 such that

∫ +∞

vi+
t f (t)dt + Ki

∫ vi+

−∞
t f (t)dt = 0, i = 1, 2.

Observing the relation

∫ +∞

v1+
t f (t)dt +

∫ v1+

−∞
t f (t)dt =

∫ +∞

v2+
t f (t)dt +

∫ v2+

−∞
t f (t)dt = E[R] > 0,

we have

(1 − Ki )

∫ vi+

−∞
t f (t)dt = E[R], i = 1, 2.

Consequently, v2+ > v1+, implying that γ−(·) is strictly increasing of K on (K0,+∞).
We can show the monotonicity of γ+(·) by similar arguments. The conclusion (i)
follows.
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It follows the Eq. (9) that
∫ v+
v− t f (t)dt = 0. Because the excess return follows

an elliptical distribution with a positive mean, |v−| > v+. Then (ii) follows. The
monotonicity results in (iii) and (iv) are straightforward and the limit results in (iii)
and (iv) can be shown by contradiction. 
�

Proposition 4 (i), (iii) and the monotonicity result in (iv) are consistent with the
results in Proposition 3. However, Proposition 4 (iv) and Proposition 3 (ii) reveal that
the two limits of the coefficient γ− for small mean of the excess return in the two cases
of 0 < α < 1 and α = 1 are different. Different from the piecewise-power utility u in
(1) with 0 < α < 1 which is concave on R

+ and convex on R
−, the piecewise-linear

utility with α = 1 is concave on the whole real spaceR. So when one investor’s utility
is piecewise linear, this investor is risk averse and then will invest smaller and smaller
amount in the risky asset as the market becomes more neutral no matter she is in a
gain or loss position. This explanation goes along with the limit results in Proposition
4 (iii) and (iv).

5 Conclusion

In this paper, we analyzed the monotonicity and limit properties of the optimal
investment strategy in a behavioral portfolio choice model over risk aversion coef-
ficient, loss aversion coefficient, and the market opportunity in terms of the mean
of the excess return. The piecewise-linear utility is also discussed. An interesting
finding is that when the excess return follows an elliptical distribution, the opti-
mal investment strategy over small mean for piecewise-power and piecewise-linear
utility exhibits different limit behavior. This finding demonstrates that piecewise-
power utility and piecewise-linear utility are qualitatively different utility functions
to describe and characterize CPT-investors’ decision-making. The monotonicity and
limit properties can help CPT-investors better understand the market circumstance
and make better investment decisions. Although this paper attempts to analyze
the properties of OISs for general distributions of the risky asset, some analy-
sis is still limited to special distributions. The investigation on the monotonicity
and limit properties over risk aversion coefficient and the mean of the excess
return for general distributions is challenging and will be studied in our future
research.
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