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We consider a finite-agent Hellwig (1980) economy with an extension to allow traders to observe
their neighbors’ signals in an exogenously given social network. There are two potential approaches
for traders to process observed signals: directly infer information about the fundamentals from the
complete collection of observed signals, or indirectly from an average of observed signals. The two
approaches lead to different information sets for traders. In this study, we investigate whether the
two economies corresponding to the two approaches are equivalent in the sense that they have
the same market equilibrium. For general network and signal structures, we present a necessary
and sufficient condition for the equivalence, revealing that the two finite-agent economies are not
equivalent in general unless the network structure and signal structure coordinate well. When traders
have homogeneous preferences and the signal structure takes the classical form in the literature, we
find that the two finite-agent economies are equivalent for regular graphs, but not for chain and star
graphs. Finally, for the classical signal structure, we show that the two large economies, defined as
the limit of a sequence of replica finite-agent economies, are equivalent for any network structure.

© 2020 Elsevier B.V. All rights reserved.
s
a
f

1. Introduction

Consider a rational expectations equilibrium (Hellwig, 1980)
conomy with an extension to an environment of social networks.
ach trader initially holds a private signal. Traders are connected
hrough an exogenously given social network in which traders
an observe their neighbors’ signals.
The most popular and most reasonable approach for traders

o process observed signals from their neighbors is to directly
nfer information about the fundamentals of the risky asset from
he complete collection of observed signals (as well as the price).
However, Ozsoylev and Walden (2011) propose a different ap-
proach in a finite-agent model1: that traders use a simple av-
erage, instead of the complete collection, of observed signals

✩ This work was supported in part by the National Natural Science Foundation
of China under Grant 71971208.

∗ Correspondence to: Academy of Mathematics and Systems Science, Chinese
cademy of Sciences, No. 55 Zhongguancun East Road, Beijing 100190, China.

E-mail address: louyoucheng@amss.ac.cn (Y. Lou).
1 It is emphasized that the finite-agent model in Ozsoylev and Walden (2011)
nly serves as a benchmark to facilitate the later analysis on large economies. In
act, the focus of Ozsoylev and Walden (2011) is on the analysis of the impact
f the properties of large information networks, not finite-agent networks, on
ssets prices.
 e
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to make Bayesian inference. The network structure determines
how information diffuses through the network; the information
processing approach determines the (new) information available
to traders, and traders’ information determines their demand for
the risky asset. Therefore, the network structure, signal struc-
ture, and information processing approach jointly determine the
market equilibrium. The two information processing approaches
may lead to different market equilibriums. In this study, we
address whether the two resulting economies corresponding to
the two information processing approaches are equivalent in the
sense that they have the same market equilibrium (the same
equilibrium price and optimal demands).

As the signal structure in our model is general, when we
investigate the equivalence between the two economies, we con-
sider a sufficient statistic for observed signals (i.e., the conditional
mean of the fundamental) instead of a simple average of observed
signals.2 Besides normality and non-degeneracy, we impose no
more requirements on the signals.

2 This generalization from a simple average to a sufficient statistic is rea-
onable because a sufficient statistic for observed signals reduces to a simple
verage of observed signals for the classical signal structure being a sum of the
undamental and an independent noise (with identical variance). See also more
xplanations in Section 2.

https://doi.org/10.1016/j.mathsocsci.2020.11.003
http://www.elsevier.com/locate/mss
http://www.elsevier.com/locate/mss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mathsocsci.2020.11.003&domain=pdf
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Motivations. Although averaging signals is a reasonable ap-
roach,3 it is not clear why traders average observed signals from
heir neighbors rather than infer information from the complete
ollection of observed signals.4 Although the average of signals is
sufficient statistic for the complete collection of signals when
ignals take the classical form of a sum of the fundamental and
n independent noise and have the same precision (Ozsoylev and
alden, 2011), it is not the case when signal precisions differ

cross traders. In addition, even if the average of signals is a
ufficient statistic for the complete collection of observed signals,
he price and the average of signals together may no longer be a
ufficient statistic for the price and the complete collection of ob-
erved signals because the price serves as an endogenous public
ignal determined by market-clearing conditions. In other words,
raders may have an incentive to make Bayesian inference based
n the complete collection of observed signals instead of the
veraged signal because they believe that the complete collection
ffers more information and thus can provide them with a higher
xpected utility. Also, as claimed by Lou r⃝ al. (2019): ‘‘Except
or special situations, there is no reason why each trader should
ake an average of signals. Indeed, averaging isn’t the problem: any
xogenous aggregation method is suspect. [......] A model of signal-
haring in networks is therefore necessary to handle the case of
ultidimensional signals at the individual level.’’ This motivates the
urrent study, wherein we formally justify the above arguments
nd claim by investigating the equivalence of the two economies.
It is reasonable that traders use a simple average of sig-

als to make Bayesian inference when the two economies are
quivalent. However, it is not reasonable when they are not
quivalent. Specifically, we show that when the two economies
re not equivalent, in the economy using the averaging approach,
here exists at least one trader who has an incentive to use
he complete collection of observed signals to increase their ex-
ected utility, besides the averaged signal (see Proposition 1).
his reveals that the economy using an averaging approach is not
‘stable’’ in some sense and thus validates the claim in Lou r⃝ al.
2019).

Main Results. The main result of the paper is a series of
haracterizations of the equivalence of the two economies. As a
asis for the subsequent development, we first show that the two
conomies are equivalent if and only if the conditional means
nder the two information processing approaches are almost
urely identical (see Proposition 2). We then show that the two
conomies are equivalent for any signal structure when the net-
ork graph is complete (see Theorem 1). We also present a
ecessary and sufficient condition on the solvability of a sys-
em of equations for the equivalence of the two economies (see
heorem 2). It shows that the two finite-agent economies are
ot equivalent in general. We show that, for any signal structure
respectively, non-complete graph), there exists a corresponding
etwork graph (respectively, signal structure) such that the two
conomies are not equivalent (see Theorems 3 and 4). In addition,
or tractability, we also revisit the classical signal structure used
n Hellwig (1980) and Ozsoylev and Walden (2011) that takes
he form of a sum of fundamental and independent noise. We
onsider homogeneous preferences, and find that the two finite-
gent economies are equivalent for regular graphs, but not for
hain and star graphs (see Corollary 2). Our results reveal that the

3 As stated in Ozsoylev and Walden (2011), the averaging method satisfies
ome reasonable properties: (i) Traders with more neighbors will receive more
recise signals about the risky asset; (ii) Two traders who have the same
eighbor set receive the same signal; (iii) All else equal, two traders’ signals
ave a higher correlation if they are connected than not connected.
4 An inexplicit assumption is that traders can observe the complete collection
f their neighbors’ signals.
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two finite-agent economies generally do not have the same mar-
ket equilibrium unless the network structure and signal structure
coordinate well.

We also consider a large replica economy similar to that in Han
and Yang (2013) and Walden (2019). The large economy is de-
fined as the limit of a sequence of finite-agent economies where
each finite-agent economy consists of several disjoint indepen-
dent subnetworks. These subnetworks have equal network size
and identical network structure. When signals take the classical
form, we show that the two large replica economies correspond-
ing to the two information processing approaches are equivalent
for any network structure (see Theorem 5). Our analysis justifies
the assumption in Ozsoylev and Walden (2011) that traders take
an average of their neighbors’ signals to make Bayesian inference
in large economies.

The results are of interest for several reasons. First, they iden-
tify the inherent coordination condition between the network
structure and signal structure which allows traders to make
Bayesian inference based on a sufficient statistic (or a simple av-
erage) of observed signals to reduce the potential computational
burden of Bayesian inference. Second, they reveal the relation
and essential distinction between the two information process-
ing approaches and add to the understanding of the impact of
social networks on traders’ decision-making and market out-
comes under the framework of rational expectations equilibrium
(REE). Finally, the results establish that the equivalence of the
two economies is determined by the conditional mean without
considering the conditional variance which is involved in the
expression of traders’ optimal demands. This observation may be
of wider significance in other CARA-normality circumstances.

Outline of the Paper. The rest of the paper is organized as
follows: Section 2 introduces the model and formulates the prob-
lem. Section 3 presents the main results on the characterizations
of the equivalence of the two finite-agent economies. Section 4
considers large economies. Section 5 presents the related litera-
ture. Section 6 concludes this paper. All proofs are presented in
the Appendix.

2. The model

Consider the rational expectations equilibrium (Hellwig, 1980)
model with an extension to permit general signal structure. This
is a single-period model and there is a single risky asset in the
economy. The risky asset has fundamental value θ , and is in
fixed supply X ∈ R, which is normalized to zero for simplifying
the exposition. Traders cannot directly observe the fundamentals;
instead, they receive signals about the fundamentals of the risky
asset.

There are finitely many traders in the economy. Each trader
has a CARA utility and maximizes the conditional expected utility
of their net profit W based on their information set F:

E [− exp{−ρW }|F] ,

where ρ is the trader’s CARA coefficient,W = W0+x(θ−p), where
W0 is the trader’s initial wealth, x denotes the holdings of the
risky asset, and p denotes its price, which is publicly observable.
To prevent the price from being fully revealing, we make the
standard assumption in the literature that there is per-capita
noise demand u in the economy (i.e., the total noise demand
equals nu).

Each trader i (i = 1, . . . , n) initially holds a (one-dimensional)
private signal yi. We impose the following assumption through-
out the study.
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ssumption 1. All random variables are normally distributed,
ith means normalized to zero and positive variance. The noise
rade u is independent of all other random variables in the econ-
my. The variance–covariance matrix of random vector (θ, y ′)′
s positive definite, and Cov(θ, yi) > 0 for every i, where y =

y1, . . . , yn)′ is the complete collection of all the signals in the
conomy. Furthermore, Var(θ |ȳ) > Var(θ |y) for any ȳ which is a
trict subset of y.

The normality assumption is standard in the literature. The
on-degeneracy assumption on (θ, y ′)′ is weak and requires that
ny trader’s (initial) signal cannot be pinned down by other
ignals in the economy, and that the fundamental can also not
e pinned down by the complete collection of all signals in the
conomy. The inequality on conditional variance means that no
ignal is redundant to predict the fundamental and the complete
ollection of all signals in the economy is strictly informationally
uperior to any of its strict subsets. This is reasonable and satis-
ied for the classical signal structure of a sum of the fundamental
nd an independent noise (see Assumption 3).
Following the literature, in this study we consider linear equi-

ibria and focus on the class of linear price functions which are
inear functions of signals and noise trade. Under the CARA-
ormality setting, it is well-known that the optimal demand for
he risky asset by trader i is given by

∗

i =
E(θ |Fi) − p
ρi Var(θ |Fi)

, (1)

where ρi is trader i’s risk aversion coefficient, and Fi is trader
i’s information set, which consists of normal random variables
and will be described in detail below. As the price is publicly
observable, p ∈ Fi for every i. A rational expectations equilibrium
(REE in short) consists of equilibrium price p and optimal demand
∗

i given by (1), such that the following market-clearing condition
olds:
n

i=1

x∗

i + nu =

n∑
i=1

E(θ |Fi) − p
ρi Var(θ |Fi)

+ nu = 0.

We now consider an environment of social networks. Investors
trade in an exogenously given social network, which is strongly
connected and described by a directed graph G.5 Besides their own
rivate signal yi, each trader i can also observe their neighbors’
ignals {yj, j ∈ Ni} via the social network6; here Ni denotes the
eighbor set of trader i in the network. As traders know their own
ignals, we naturally assume that i ∈ Ni for every i. For notational
onvenience, we denote y i = (yj, j ∈ Ni) as the observed signals
y trade i. There are two potential approaches for traders to
rocess observed signals:

• Approach 1: Traders directly infer information about the
fundamental of the risky asset from the complete collection
y i of observed signals. In this case, the information set of
trader i is given by {y i, p} =: F1

i .

5 A social network is said to be strongly connected if for any two nodes in
he network, there exists a path from one node to the other one.
6 Ozsoylev and Walden (2011) and Walden (2019) assume that traders

ruthfully reveal their private information to their neighbors. This assumption
s reasonable in large economies because any trader has no impact on prices
ven though the trader has informational advantage. But in small economies,
he incentive to lie about their private information to their neighbors indeed
xists. There possibly exist punishment mechanisms that can guarantee that
raders voluntarily reveal their information; see Footnote 14 in Ozsoylev and
alden (2011) and the arguments in Section 3.1 in Walden (2019) for more

xplanations. A full analysis on such punishment mechanisms is beyond the
cope of this paper. In this paper, we mainly characterize the equivalence of
he two different information processing approaches, as shown below, based on
he presupposition of truthful information sharing between agents.
95
• Approach 2: Traders indirectly infer information about the
fundamental from the conditional mean E(θ |y i). In this case,
the information set of trader i is given by {E(θ |y i), p} =: F2

i .

Two remarks are in order here. First, the model setting is the
ame as in the Hellwig (1980) model except for the two differ-
nces listed below. The first one is that the signal structure in
ur model is general. Besides the normality and non-degeneracy
equirements made in Assumption 1, we impose no more require-
ents. The second one is that, besides their own private signal,
ach trader can also obtain their neighbors’ signals. Second, we
llustrate the reason traders infer information from a conditional
ean instead of an averaged signal, as described in Approach
. Ozsoylev and Walden (2011) consider a special signal structure
i = θ + ϵi, where the noise terms {ϵi} are normally distributed,
nd jointly independent across traders with mean zero and iden-
ical variance. In the benchmark model of Ozsoylev and Walden
2011), each trader takes an average of her neighbors’ signals to
ake Bayesian inference. By the projection theorem for normal

andom variables (Lemma 1 in the Appendix), the conditional
ean E(θ |y i) equals the average 1

|Ni|

∑
j∈Ni

yj of signals up to
ultiplying it by a constant,7 that is, the conditional mean E(θ |y i)

s informationally equivalent to the average 1
|Ni|

∑
j∈Ni

yj. How-
ver, for general signal structure or the special signal structure
iscussed above but with different precisions, the conditional
ean of a group of signals is no longer informationally equivalent

o their average. As the signal structure in our model is general,
t is reasonable for us to consider a conditional mean instead of
n average of signals.
For the two information processing approaches (i.e., Approach
and Approach 2), we obtain two corresponding (rational ex-
ectations) economies, denoted as Economy 1 and Economy
, respectively.8 The two economies are similar, except that
raders process their neighbors’ information differently. The two
conomies can be nested in the economy in Lou r⃝ al. (2019)
hich permits signals to be multidimensional and to present
rbitrary correlation pattern. Proposition 3 in Lou r⃝ al. (2019)
ells us that for each of the two economies, there exists a linear
EE and every linear REE is regular. That is, there exist π =

π1, . . . , πn)′ ̸= 0 and γ > 0 such that p = π′y + γ u is
n equilibrium price.9 We assume that the linear equilibrium in
he two economies is unique,10 and let p1 and p2 denote the
espective (unique) linear, regular equilibrium price, and x∗

i,1 and
∗

i,2 the respective optimal demand for the risky asset by trader i.

7 Note that all the random variables are normalized to have mean zero in
ssumption 1.
8 Economies 1 and 2 arise in some specific settings. Economy 1 arises when

some trader is willing to share or sell her information to the other traders
for their join benefit (also refer to Indjejikian et al., 2014 for a strategical
consideration). Meanwhile, Economy 2 arises when some trader can observe the
order flow of the other traders (Yang and Zhu, 2020). In this case, the trader
will also infer the other traders’ private information hidden in the order flow
besides her own private information and the price. As the order flow is a linear
function of the average of the other traders’ signals and the price (under the
assumption of the homogeneity of the utility function and the signal precisions
of traders), the order flow and the price together are informationally equivalent
to the information set of the averaged signal and the price. Consequently, the
resulting economy can be equivalently reformulated in terms of Economy 2.
9 In Economy 2, we can view E(θ |y i) as the one-dimensional ‘‘signal’’ of

trader i. Then by Proposition 3 in Lou r⃝ al. (2019), we know that there exist
vector (q1, . . . , qn)′ and γ > 0 such that

∑n
i=1 qiE(θ |y i) + γ u is the equilibrium

rice. Observing that E(θ |y i) is a linear function of signals y i , the equilibrium
rice

∑n
i=1 qiE(θ |y i)+ γ u can be rewritten as a form of π′y + γ u. Note that the

eight vector π and γ may differ for the two economies. In addition, because
ll random variables are normalized to have mean zero, there is no intercept
erm in the price function.
10 The linear equilibrium is indeed unique when traders are sufficiently risk
verse, see Proposition 4 in Lou r⃝ al. (2019).
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e argue that the two economies are equivalent if p1 = p2 and
∗

i,1 = x∗

i,2, i = 1, . . . , n, almost surely.
It is important to investigate the equivalence of the two

conomies. When the two economies are equivalent, it is rea-
onable that traders use the conditional mean, instead of the
omplete collection, of observed signals to make Bayesian in-
erence. When the two economies are not equivalent, Economy
is not ‘‘stable’’ in the sense that there exists at least one

rader in this economy who has an incentive to use the complete
ollection of observed signals from their neighbors to increase
heir expected utility, besides the conditional mean, as indicated
y the following proposition.

roposition 1. When the two economies are not equivalent, in
conomy 2 there exists at least one trader i whose expected utility
t the demand E(θ |E(θ |yi),yi,p2)−p2

ρi Var(θ |E(θ |yi),yi,p2)
11 is strictly greater than that at

E(θ |E(θ |yi),p2)−p2
ρi Var(θ |E(θ |yi),p2)

.

We can also similarly show that there still exists at least one
rader who has an incentive to use the complete collection of
heir neighbor’s signals to increase their expected utility when
he two resulting economies are still not equivalent (where the
wo resulting economies are the same as before except that in
conomy 2, traders also use the collection of their neighbors’
nformation when they have such an incentive as shown in
roposition 1). The phenomenon occurs repeatedly until all
raders use the complete collection of their neighbors’ informa-
ion to make Bayesian inference, as happens in Economy 1. The
bove arguments show that when the two economies are not
quivalent, there is no reason why traders use an averaged signal
ather than the complete collection of observed signals to make
ayesian inference and consequently validate the claim in Lou r⃝
l. (2019).
The rest of this paper will be devoted to investigating whether

nd under what conditions the two economies are equivalent.

otations. The operator Var stands for the variance of a random
ariable; and boldface Var, for the variance–covariance matrix
f a random vector. Similarly, Cov stands for covariance; and
oldface Cov, for a vector of covariances. For instance, Var(p) will
e the scalar variance of price p, whereas Var(y) stands for the
ariance–covariance matrix of random vector y. For any random
ariable x and random vector z = (z1, . . . , zt )′, Cov(x, z) is short-
and for the vector of covariances (Cov(x, z1), . . . , Cov(x, zt ))′,
here ′ denotes the transpose of a vector.

. Equivalence characterization

In this section, we first present necessary and sufficient condi-
ions for the equivalence of the two economies, and then establish
wo impossibility results which reveal that the two economies are
ot equivalent in general. We finally analyze the equivalence for
classical signal structure commonly used in the literature. In
hat follows we also refer to p as the equilibrium price of one of
he two economies when we do not explicitly specify which one.

.1. Necessary and sufficient conditions

The following proposition presents a necessary and sufficient
ondition for the equivalence of the two economies in terms of
onditional mean.

11 It is clear that E(θ |E(θ |y i), y i, p2) = E(θ |y i, p2) and thus,

Var(θ |E(θ |y i), y i, p2) = Var(θ |y i, p2)

by the Law of Total Variance.
 (

96
Proposition 2. The two economies are equivalent if and only if one
equilibrium price p of the two economies satisfies that E(θ |y i, p) =

E(θ |E(θ |y i), p) almost surely for every i.

Proposition 2 simplifies the equivalence condition in the def-
inition. To verify the equivalence of the two economies by the
definition, it needs to be checked whether, besides the equi-
librium price, the optimal demands of traders, which involve
conditional mean and variance, in the two economies are respec-
tively equal. However, Proposition 2 shows that the equivalence
of the two economies is determined by the conditional mean. The
following result shows that the two economies are equivalent (for
any signal structure) if the network graph is complete, that is,
Ni = {1, . . . , n} for every i.

Theorem 1. The two economies are equivalent if the network graph
is complete.

When the network graph is complete, every trader can access
all the information in the economy. The full information is a suffi-
cient statistic in the estimation of the fundamental and the price
is therefore redundant because it cannot help traders achieve
higher utility. In addition, it is clear that the conditional mean
of signals is also a sufficient statistic for the complete collection
of all signals in the economy using Bayesian updating. The two
economies are thus equivalent for complete graphs.

We continue to consider the equivalence for non-complete
graphs. Next, we impose an assumption, which requires that,
besides the ‘‘signal’’ E(θ |y i), price p can offer more information to
predict the fundamental. We intuitively show, in Remark 2, that
it indeed holds for the classical signal structure commonly-used
in the literature.

Assumption 2. The equilibrium price p in Economy 2 satisfies
that
Var(θ |E(θ |y i), p) < Var(θ |E(θ |y i)) for any i with Ni ̸= {1, . . . , n}.

The following result characterizes the functional structure of
the candidate equilibrium price under which the two economies
are equivalent.

Proposition 3. Suppose the network graph is not complete and
Assumption 2 holds. Then, a necessary condition for the equivalence
of the two economies is that the two economies have the same
equilibrium price p and the equilibrium price takes the form p =

cE(θ |y) + γ u, where c > 0 and γ > 0 are constants.

Remark 1. The price function p = cE(θ |y) + γ u indeed satisfies
Assumption 2 by noting Lemma 4 in the Appendix and the three
relations that Cov(θ, p) = c Var(E(θ |y)) (Lemma 3 (i)),

Cov(E(θ |y i), p) = c Cov(E(θ |y i),E(θ |y)) = c Var(E(θ |y i))

(Lemma 3 (ii)) and Var(E(θ |y)) > Var(E(θ |y i)) for any i with Ni ̸=

{1, . . . , n}, where the inequality is due to the relation Var(θ |y) <
Var(θ |y i) by Assumption 1, and the two equalities Var(θ |y) =

Var(θ ) − Var(E(θ |y)) and Var(θ |y i) = Var(θ ) − Var(E(θ |y i)) (the
Law of Total Variance).

Proposition 3 establishes a necessary condition for the equiv-
alence of the two economies. It shows that it is necessary for the
equivalence that the signal part in the price function perfectly
aggregates all the information in the economy. We remark that
although signals enter the price function p = cE(θ |y) + γ u in a
perfect Bayesian updating way, the price function p = cE(θ |y) +

γ u is not an equilibrium price in general.12 It is also worth noting

12 As shown by Theorem 2 in this paper, the price function p = cE(θ |y)+ γ u
is an equilibrium price in Economy 2 if and only if the system of equations (5)
and (6) has a positive solution (c, γ ). However, the system of equations (5) and
6) generally has no positive solution unless under special circumstances.
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hat the signal part of a price function cannot perfectly aggregate
nformation in the presence of noise trade in general,13 although
t can when there is no noise trade or the noise trade is small
nough; see Grossman (1976), Hellwig (1980) and Lou r⃝ al.
2019).

We next discuss the sufficiency condition. Precisely, we inves-
igate the two questions below:

(i) Does the price function p = cE(θ |y) + γ u almost surely
satisfy the relation E(θ |y i, p) = E(θ |E(θ |y i), p) for every i?

(ii) Do constants c > 0 and γ > 0 exist such that p = cE(θ |y)+
γ u is an equilibrium price? More specifically, such that the
price function p = cE(θ |y) + γ u satisfies the following
market-clearing condition?

n∑
i=1

E(θ |E(θ |y i), p) − p
ρi Var(θ |E(θ |y i), p)

+ nu = 0. (2)

The following proposition affirmatively answers the first question
(i).

Proposition 4. For any c > 0 and γ > 0, p = cE(θ |y)+γ u almost
surely satisfies that E(θ |y i, p) = E(θ |E(θ |y i), p) for every i.

Proposition 4 shows that under the price function p = cE(θ |y)
+ γ u,14 the two information processing approaches lead to the
same optimal demand by any trader. In general, the information
set {y i, p} offers more information than {E(θ |y i), p}. However,
when the signal part of the price function perfectly aggregates
information, the two information sets are equally informative.

We now address the second question (ii) of whether the
price function p = cE(θ |y) + γ u is an equilibrium price for
appropriately-selected parameters c and γ . Denote

ai := Var(E(θ |y)) − Var(E(θ |y i)) ≥ 0.

By equality (A.3) in the Appendix with the identity s = y i and
z = p, along with (A.12)–(A.14) in the Appendix, we see that
for the price function p = cE(θ |y) + γ u, the conditional mean is
given by

E(θ |E(θ |y i), p) =
γ 2 Var(u)

γ 2 Var(u) + c2ai
E(θ |y i) +

cai
γ 2 Var(u) + c2ai

p

=: αiE(θ |y i) + βip, (3)

nd the conditional variance is thus given by

Var(θ |E(θ |y i), p) = Var(θ ) − [αi Cov(θ,E(θ |y i)) + βi Cov(θ, p)]
= Var(θ ) − [αi Var(E(θ |y i)) + βic Var(E(θ |y))]

= Var(θ ) − Var(E(θ |y i)) −
c2a2i

γ 2 Var(u) + c2ai
,

(4)

here the second equality follows from (A.12) and (A.14) in the
Appendix, and the third equality from the definitions of αi, βi
and ai. Substituting p = cE(θ |y) + γ u into the market-clearing
condition (2), and matching the terms, we get the following
system of equations:

γ

n∑
i=1

γ 2 Var(u) + (c2 − c)ai

nρi[γ 2 Var(u) + c2ai]
[
Var(θ ) − Var(E(θ |y i)) −

c2a2i
γ 2 Var(u)+c2ai

] = 1,

13 That is, although Proposition 3 in Lou r⃝ al. (2019) tells us that there exist
c1, . . . , cn)′ and γ > 0 such that the equilibrium price in Economy 2 is of the
form p =

∑n
i=1 ciE(θ |y i)+ γ u,

∑n
i=1 ciE(θ |y i), which cannot be described as the

orm of cE(θ |y) for some c > 0 in general.
14 Note again that price function p = cE(θ |y)+γ u is not an equilibrium price
in general, see Footnote 12 for more explanation.
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c
n∑

i=1

γ 2 Var(u) + (c2 − c)ai

ρi[γ 2 Var(u) + c2ai]
[
Var(θ ) − Var(E(θ |y i)) −

c2a2i
γ 2 Var(u)+c2ai

]E(θ |y)

=

n∑
i=1

γ 2 Var(u)

ρi[γ 2 Var(u) + c2ai]
[
Var(θ ) − Var(E(θ |y i)) −

c2a2i
γ 2 Var(u)+c2ai

]E(θ |y i)

almost surely,

or, equivalently, in a simplified form

γ

n∑
i=1

γ 2 Var(u) + (c2 − c)ai
nρi{γ 2 Var(u)ai + [γ 2 Var(u) + c2ai][Var(θ ) − Var(E(θ |y))]}

= 1,

(5)

γ

n∑
i=1

γ 2 Var(u)
nρi{γ 2 Var(u)ai + [γ 2 Var(u) + c2ai][Var(θ ) − Var(E(θ |y))]}

E(θ |y i)

= cE(θ |y) almost surely (6)

From the above analysis, together with Propositions 2–4, we
get a necessary and sufficient condition for the equivalence of the
two economies.15

Theorem 2. Suppose Assumption 2 holds. Then, the two economies
are equivalent if and only if the system of equations (5) and (6) has
a positive solution (c, γ ).16

3.2. Impossibility results

The following two theorems reveal that the two economies are
generally not equivalent.

Theorem 3. For any signal structure that satisfies Assumption 1,
there always exists a non-complete network graph, which depends
on the given signal structure, such that the two economies are not
equivalent under this graph.

Theorem 4. For any non-complete network graph, there always
exists a signal structure, which depends on the given network graph
and satisfies Assumption 1, such that the two economies are not
equivalent under this signal structure.

In the proof, for any given signal structure (respectively, non-
complete graph), we can construct a corresponding network
graph (respectively, signal structure) such that the system of
equations (5) and (6) has no positive solution. Theorems 4 and
2 reveal that the two economies are equivalent for any signal
structure if and only if the network graph is a complete graph.

15 When the network graph is complete, Var(E(θ |y i)) = Var(E(θ |y)) and
consequently, ai = 0 for every i. Hence the system of equations (5) and (6)
has a positive solution:

c = 1 and γ =
Var(θ |y)∑n

i=1
1
ρi

.

This result is consistent with Theorem 1.
16 We remark that when the network graph is not complete, if the system of
equations (5) and (6) has a positive solution (c, γ ), then it must hold that c < 1.
o see this, first observe that when the network graph is not complete, ai > 0
or at least one i by the equality (4) and Assumption 2. Then taking covariance
ov(θ, ·) of both sides of (6) and arranging the term gives

n∑
i=1

γ 2 Var(u)
ρi{γ 2 Var(u)ai + [γ 2 Var(u) + c2ai][Var(θ ) − Var(E(θ |y))]}

×
Var(E(θ |y i))
Var(E(θ |y))

= c,

here we use Lemma 3 (i). Finally, using an argument by contradiction, it
ollows from the preceding equality, the relation Var(E(θ |y)) ≥ Var(E(θ |y i)),
that is, ai ≥ 0 for every i (the strict inequality holds for at least one i) and the
equality (5) that c < 1.
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n important observation from the preceding two impossibility
esults, as well as Theorem 2, is that for the equivalence of the
wo economies, the network structure and signal structure need
o coordinate well.

.3. The classical signal structure

For the general signal structure, it is extremely difficult to
dentify whether the system of equations (5) and (6) has a posi-
ive solution. To get a more precise characterization, in this sub-
ection we consider the classical signal structure commonly used
n the literature (see, e.g., Grossman, 1976, Hellwig, 1980, Oz-
oylev and Walden, 2011 and Han and Yang, 2013).

ssumption 3. The signal structure takes the form of yi = θ +ϵi,
here the noise terms {ϵi} are normally distributed with mean
ero, independent of each other and of all other random variables
n the economy.

emark 2. Here, we test Assumption 2 under Assumption 3. Let
= π′y + γ u be the equilibrium price in Economy 2. Under

ssumption 3, letting τθ = 1/Var(θ ) and τϵj = 1/Var(ϵj), by the
rojection theorem for normal random variables (Lemma 1 in the
Appendix; also refer to page 378 in Vives, 2008), we obtain

(θ |y i) =

∑
j∈Ni

τϵjyj
τθ +

∑
j∈Ni

τϵj

=

∑
j∈Ni

τϵj

τθ +
∑

j∈Ni
τϵj

θ +

∑
j∈Ni

τϵjϵj

τθ +
∑

j∈Ni
τϵj

.

onsequently,

Cov(θ − E(θ |y i), p)

= Cov
( τθ

τθ +
∑

j∈Ni
τϵj

θ −

∑
j∈Ni

τϵjϵj

τθ +
∑

j∈Ni
τϵj

,

n∑
i=1

πi(θ + ϵi)
)

=
1

τθ +
∑

j∈Ni
τϵj

( n∑
i=1

πi −
∑
j∈Ni

πj

)
.

Hence, Cov(θ − E(θ |y i), p) ̸= 0 for any i with Ni ̸= {1, . . . , n}
and then Assumption 2 holds under Assumption 3 by Lemma 4
in the Appendix if the weight assigned to each signal yi in the
equilibrium price p = π′y+γ u is positive, that is, πi > 0 for every
i. Proposition 7 (iv) in Lou r⃝ al. (2019) indicates that when the
variance of noise trade is sufficiently large, every Qi, which is the
(scaled) weight given to the ‘‘signal’’ E(θ |y i), is positive. From the
equality p = γ

∑n
i=1 QiE(θ |y i)+γ u and the expression for E(θ |y i)

given above, we conclude that when the noise trade is sufficiently
large, every πi is indeed positive.

Under the signal structure in Assumption 3, we now present
a more explicit necessary and sufficient condition for the equiv-
alence.

Corollary 1. Suppose Assumptions 2 and 3 hold, the noise terms {ϵi}

have the same variance, and traders have homogeneous preferences
in the sense that they have the same risk aversion coefficient ρ. The
two economies are then equivalent if and only if the following system
of (n + 1) equations has a positive solution (c, γ ):

γ

nρ

n∑
i=1

γ 2 Var(u) + (c2 − c)( 1
τθ +|Ni |τϵ

−
1

τθ +nτϵ
)

γ 2 Var(u) 1
τθ +|Ni |τϵ

+ c2( 1
τθ +|Ni |τϵ

−
1

τθ +nτϵ
) 1

τθ +nτϵ

= 1, (7)

γ 3 Var(u)
cnρ

∑
{j|i∈Nj}

τθ + nτϵ

γ 2 Var(u) + c2 (n−|Nj |)τϵ
(τθ +nτϵ )2

= 1, i = 1, . . . , n.

(8)

{

98
orollary 2. Suppose the network graph is undirected,17 and let the
onditions in Corollary 1 hold. Then

• the two economies are equivalent if the network graph is
regular, and

• the two economies are not equivalent if the network graph is
a chain or a star.18

. A large economy

In this section, we consider a large economy which can justify
he assumption that traders are price-takers and are willing to
hare information with their neighbors. Here, we assume that
raders’ signals take the form in Assumption 3 and consider the
ame network setting as the replica economy in Han and Yang
2013) and Walden (2019).

We first define an m-replica economy Am as one which con-
ists of m disjoint identical replicas of the network introduced
n Section 2. The m replicas have equal network size (i.e., n) and
dentical network structure. In the economy Am, noise terms in
ignals are independent across traders. The total noise trade in
he economy Am equals nmu, where nm is the size of economy
m, and u is a normal random variable with mean zero and inde-
endent of all other random variables in the economy. We then
onsider a sequence of replica economies {Am}m≥1 and define the
arge economy as the limit A := limm→∞ Am; see Walden (2019)
or more illustrations on replica economies. We also define two
arge economies, denoted A1 and A2, corresponding to Approach
and Approach 2, analogous to those in Section 2. Like the

inite-agent economies in Section 2, the two large economies are
dentical except for differing information processing approaches.

The following theorem shows that the two large economies
re equivalent.

heorem 5. Let Assumption 3 hold and traders have homogeneous
references in the sense that they have the same risk aversion
oefficient ρ. For any network structure, the two large economies
1 and A2 are equivalent. The identical equilibrium price in the two

arge economies is given by

=
1∑n

i=1

(
τθ +

∑
j∈Ni

τϵj

)
⎛⎝ n∑

i=1

∑
j∈Ni

τϵjθ + nρu

⎞⎠ ,

here τθ =
1

Var(θ ) and τϵj =
1

Var(ϵj)
.

Although the two information processing approaches in
finite-agent economies are generally not equivalent, as shown in
Section 4, they are indeed equivalent in large economies (for the
classical signal structure), as shown by Theorem 5. This justifies
the assumption that traders take an average of their neighbors’
signals to make Bayesian inference in Ozsoylev and Walden
(2011). Intuitively, when the economies are large, the noise terms
do not enter into prices such that the equilibrium prices take a
linear form of the fundamental and an independent term (i.e., the
noise demand u). Under such a price structure, the projection
heorem for normal random variables tells us that the conditional
stimates based on a group of signals with a fundamental-noise
tructure are the same regardless of whether some signals are
eplaced by their conditional means.

17 A graph is said to be undirected if the arc (i, j) belongs to this graph, then
he arc (j, i) also belongs to this graph.
18 An undirected graph is said to be k-regular if each node has exactly k
eighbors, a chain if the arc set is given by {(i, i + 1), i = 1, . . . , n − 1}
p to a permutation in node index, and a star if the arc set is given by
(1, i), i = 2, . . . , n} up to a permutation in node index.
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. Related literature

Our study is related to the vast literature on REE with a Gaus-
ian signal structure.19 Our work investigates the equivalence
f the two economies with different information processing ap-
roaches built upon the Hellwig (1980) model with an extension
o allow for general signal structure. The resulting two noisy
EE models can be nested in the model in Lou r⃝ al. (2019).

However, different from Lou r⃝ al. (2019), which shows the
existence and regularity of linear equilibrium, and establishes
an information aggregation result in the presence of small noise
trade, our work focuses on the equivalence of the two resulting
economies. Noteworthily, the equilibrium existence and regular-
ity results in Lou r⃝ al. (2019) can be directly applied to establish
the existence and regularity of a linear equilibrium of the two
economies considered here.

Our work is also related to the recent strand of theoretical
literature on the implications of information sharing/diffusion/
disclosure on market outcomes,20 such as efficiency, liquidity,
olatility, volume, and welfare, in the framework of REE (see,
.g., Colla and Mele, 2010, Han and Yang, 2013, Manela, 2014, In-
jejikian et al., 2014, Goldstein and Yang, 2017 and Yang and
hu, 2020). Compared to the setting when there is no social
ommunication, Colla and Mele (2010) find that a market with a
yclical network structure will be accompanied by higher volume,
iquidity, and efficiency. Han and Yang (2013) consider a model
n which one trader receives a signal about the fundamental and
he other traders receive a noisy version of this signal via social
ommunication. Traders set their demand based on prices and
he observed signals from their neighbors. How networks affect
arket outcomes has been shown to depend crucially on whether

he fraction of informed traders is exogenously fixed or endoge-
ously determined at a cost. Manela (2014) analyzes how the
peed of information diffusion in a social network affects traders’
elfare. Indjejikian et al. (2014) reveal that an insider has an

ncentive to intentionally leak some of their private information
o an unrelated party.

Our study is most closely related to the two works of Oz-
oylev and Walden (2011) and Walden (2019). In the finite-agent
odel in Ozsoylev and Walden (2011)21 and the dynamic REE
odel in Walden (2019),22 information is shared/transmitted via

a social network. Traders’ signals take the classical form of a
sum of the fundamental and independent noise. After observing
neighbors’ signals, traders infer information about the funda-
mental from an average of the observed signals as well as from
prices. Ozsoylev and Walden (2011) and Walden (2019) study,
for their respective models with large information networks, how
he network topology (such as connectedness and centrality)
ffects factors such as asset prices, volatility, trading volume, and
elfare. Motivated by the approach of averaging neighbors’ in-

ormation, in this study, we build upon the Hellwig (1980) model

19 See, for example, Grossman (1976), Hellwig (1980), Grossman and Stiglitz
1980), Verrecchia (1982), Vives (2008), Ganguli and Yang (2009), Goldstein and
ang (2015), Rahi and Zigrand (2018), He et al. (2019), Lou and Wang (2020)
nd Lou r⃝ al. (2019), among many others.
20 There are also empirical/experimental literature that study the effect of
ocial networks on investment decision-making and market outcomes, see,
or example, Feng and Seasholes (2004), Hong et al. (2004), Hong et al.
2005), Brown et al. (2008), Pool et al. (2015), Heimer (2016), Ozsoylev et al.
2014) and Halim et al. (2019), among many others.
21 It is emphasized that the finite-agent model in Ozsoylev and Walden (2011)
nly serves as a benchmark to facilitate the later analysis on large economies.
22 Different from the risk-aversion assumption in Ozsoylev and Walden (2011)
nd this paper, Walden (2019) builds upon a different REE model in which a
isk-neutral competitive market maker is present in the market to facilitate the
nalysis.
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with the aim of investigating the equivalence of the averaging
approach and the most popular approach of inferring information
from the complete collection of neighbors’ signals. Different from
the special signal structure in Ozsoylev and Walden (2011), we
consider a more general signal structure and use a sufficient
statistic for observed signals to substitute for the averaged signal.

Our study is also related to the literature on Bayesian learning
(Banerjee, 1992; Bikhchandani et al., 1992) and non-Bayesian
learning (DeGroot, 1974; Demarzo et al., 2003; Jadbabaie et al.,
2012; Molavi et al., 2018) over social networks. This literature
explores the information aggregation implications of Bayesian/
Non-Bayesian inference in an environment where individuals can
observe the actions of other agents. Our study differs from this
literature in that our model is a static (not a dynamic) one, and
agents in it can only observe the signals, not the actions, of other
agents.

6. Concluding remarks

We revisited the Hellwig (1980) model under an environ-
ment in which traders can observe their neighbors’ signals via
an exogenously given social network. There are two potential
approaches for traders to process the observed signals from
their neighbors: traders infer information about the fundamental
directly from the complete collection of observed signals, or indi-
rectly from a sufficient statistic of observed signals (i.e., the aver-
age of observed signals when signals take the classical form of a
sum of the fundamental and independent noise). We presented a
complete characterization of the necessary and sufficient condi-
tions for the equivalence between the two finite-agent economies
corresponding to the two information processing approaches. It
shows that the two economies are not equivalent in general,
unless the network structure and signal structure coordinate
well. For the classical signal structure, we showed that the two
economies are equivalent for regular graphs, but not for chain
graphs and star graphs. In addition, we also showed that when
the signals take the classical form, the two large economies, de-
fined as the limit of a sequence of replica finite-agent economies,
are equivalent for any network structure.

Although the conditional mean of the fundamental is a suffi-
cient statistic for the complete collection of the observed signals,
the results reveal that the two information processing approaches
do not, in general, lead to the same market equilibrium under the
framework of REE when the price is also considered as endoge-
nous public information. Our analysis reveals the relation and the
essential distinction between the two information processing ap-
proaches, and contributes to the literature on the impact of social
networks on traders’ decision-making and market outcomes.

There are several interesting extensions to be tackled in the
future. In this study, we did not consider the cost associated
with information acquisition. Although the complete collection
of signals always weakly dominates the sufficient statistic of
signals as shown by Proposition 1, observing the former may be
costlier than the latter in practice. Therefore, the first interesting
extension would be to consider the information acquisition cost
as done in Grossman and Stiglitz (1980), and investigate the
trade-off between the benefit and the cost from observing more
informative signals. The second interesting extension would be
to apply the developed method in this study to analyze the
equivalence of the two information processing approaches in
other CARA-normality models. The third one is to extend the
current analysis to more general multi-asset settings, where the
equilibrium existence in a finite-agent, multi-asset setting has
been established (Carpio and Guo, 2019).
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ppendix

In this appendix, we present all the proofs. We begin with
ome useful lemmas. The first one is the standard projection
heorem for normal random variables, which will be frequently
sed in the proofs; refer to Chapter 5, Section 4 in DeGroot (1970)
or more details.

emma 1. For a normal random vector (θ, s′)′ with mean zero and
positive definite variance–covariance matrix(

Var(θ ) Cov(θ, s)′
Cov(θ, s) Var(s)

)
,

the conditional mean and variance are respectively given by

E(θ |s) = Cov(θ, s)′Var(s)−1s

and

Var(θ |s) = Var(θ ) − Cov(θ, s)′Var(s)−1Cov(θ, s).

It follows from the above projection theorem that

Var(θ ) = Var(θ |s) + Var(E(θ |s)),

which is referred to as the Law of Total Variance in the literature.

Lemma 2. Let s be a normal random vector. Then

E(θ |E(θ |s)) = E(θ |s), Var(θ |E(θ |s)) = Var(θ |s).

Proof. There is no loss of generality in assuming that Var(s)
is positive definite because, otherwise, the desired result can be
shown using the arguments below by removing the components
in s which can be expressed as a linear combination of the other
components in s. According to Lemma 1,

E(θ |s) = Cov(θ, s)′Var(s)−1s

and

Var(θ |s) = Var(θ ) − Cov(θ, s)′Var(s)−1Cov(θ, s).

From the conditional mean E(θ |s), it is easily verified that

Cov(θ,E(θ |s)) = Cov(θ, s)′Var(s)−1Cov(θ, s)

nd

ar(E(θ |s)) = Cov(θ, s)′Var(s)−1Cov(θ, s).

sing Lemma 1 and the two preceding equalities, we obtain

(θ |E(θ |s)) =
Cov(θ,E(θ |s))
Var(E(θ |s))

E(θ |s) = E(θ |s)

nd

ar(θ |E(θ |s)) = Var(θ ) −
Cov(θ,E(θ |s))2

Var(E(θ |s))
= Var(θ ) − Cov(θ, s)′Var(s)−1Cov(θ, s)
= Var(θ |s).

The conclusion follows. □

Lemma 3. Let s be a normal random vector and s̄ a subset of s.
Then, the following equalities hold
100
(i) Var(E(θ |s)) = Cov(θ,E(θ |s));
(ii) Cov(E(θ |s̄),E(θ |s)) = Var(E(θ |s̄));
(iii) Cov(E(θ |s), s̄) = Cov(θ, s̄).

Proof. (i) was shown in the proof of Lemma 2, and (ii) follows
from the following series of equalities:

Cov(E(θ |s̄),E(θ |s)) = E[E(θ |s̄)E(θ |s)]
= E[E(E(θ |s̄)E(θ |s)|s̄)]
= E[E(θ |s̄)E(E(θ |s)|s̄)]
= E[E(θ |s̄)2]
= Var(E(θ |s̄)),

where the first and last equalities follow from the definitions of
covariance and variance, and the assumption that the mean of
θ equals zero, the second from the definition of conditional ex-
pectation, the third from the property ‘‘pulling out what’s known’’
of conditional expectation, and the fourth from the tower prop-
erty of conditional expectation. By E(θ |s) = Cov(θ, s)′Var(s)−1s
(Lemma 1), we have Cov(E(θ |s), s) = Cov(θ, s), from which (iii)
follows. The proof is completed. □

Lemma 4. Let s be a normal random vector and z a normal
random variable. Then Var(θ |E(θ |s), z) = Var(θ |E(θ |s)) if and only
if Cov(θ − E(θ |s), z) = 0.

Proof. The proof follows by some simple computations using
Lemma 1 and the relation Cov(θ,E(θ |s)) = Var(E(θ |s)) (Lemma 3
(i)). □

Lemma 5. Let (z, s′)′ be a normal random vector with mean zero,
where s ∈ Rm, m ≥ 2, Var((θ, s′)′) be positive definite, Cov(z, θ ) ̸=

0, and Cov(θ, s) ̸= cCov(z, s) for any c ̸= 0. Then E(θ |s, z) =

E(θ |s) almost surely if E(θ |s, z) = E(θ |E(θ |s), z) almost surely.

Proof. We assume without loss of generality that Var((s′, z)′)
is positive definite, otherwise z can be expressed as a linear
combination of s (note that Var(s) is positive definite, which
follows from the positive definiteness of Var((θ, s′)′)); then, the
equality E(θ |s, z) = E(θ |s) trivially holds.

Suppose E(θ |s, z) = E(θ |E(θ |s), z) almost surely. By virtue of
Lemma 1, together with some simple calculations, the conditional
mean of θ conditional on {s, z} is given by

E(θ |s, z) = α′s + βz,

where

α =

[
Var(s) −

Cov(z, s)Cov(z, s)′

Var(z)

]−1 [
Cov(θ, s) −

Cov(z, θ )
Var(z)

Cov(z, s)
]
,

(A.1)

β =
Cov(z, θ ) − Cov(θ, s)′Var(s)−1Cov(z, s)
Var(z) − Cov(z, s)′Var(s)−1Cov(z, s)

. (A.2)

Furthermore, because {E(θ |s), z} is linearly independent, by
Lemma 1 we also have Eq. (A.3) which is given in Box I. Observe
the relations that E(θ |s) = Cov(θ, s)′Var(s)−1s (Lemma 1) and
Var(E(θ |s)) = Cov(θ,E(θ |s)) (Lemma 3 (i)). Then, by the linear
independence of z and s, identifying coefficients on s in (A.1) and
(A.3) it is immediate that[
Var(s) −

Cov(z, s)Cov(z, s)′

Var(z)

]−1 [
Cov(θ, s) −

Cov(z, θ )
Var(z)

Cov(z, s)
]

=
Var(z) Var(E(θ |s)) − Cov(E(θ |s), z) Cov(θ, z)

Var(z) Var(E(θ |s)) − Cov(E(θ |s), z)2
Var(s)−1Cov(θ, s).

(A.4)
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E(θ |E(θ |s), z)

=

{
Var(z) Cov(θ,E(θ |s)) − Cov(E(θ |s), z) Cov(θ, z)

}
E(θ |s) +

{
Var(E(θ |s)) Cov(θ, z) − Cov(θ,E(θ |s)) Cov(E(θ |s), z)

}
z

Var(z) Var(E(θ |s)) − Cov(E(θ |s), z)2
. (A.3)

Box I.
i

E

a
a
c

ultiplying Var(s) −
Cov(z,s)Cov(z,s)′

Var(z) on both sides of (A.4), we get

Cov(θ, s) −
Cov(z, θ )
Var(z)

Cov(z, s)

=
Var(z) Var(E(θ |s)) − Cov(E(θ |s), z) Cov(θ, z)

Var(z) Var(E(θ |s)) − Cov(E(θ |s), z)2

×

[
Im −

Cov(z, s)Cov(z, s)′

Var(z)
Var(s)−1

]
Cov(θ, s), (A.5)

here Im denotes the identity matrix in Rm. According to the
ypothesis Cov(θ, s) ̸= cCov(z, s) for any c ̸= 0, Cov(z, θ ) ̸= 0

and the equality (A.5), we immediately conclude that Cov(θ, s) ̸=

. Consequently, the two coefficients on both sides of (A.5) must
e equal, and we therefore have

Cov(z, θ ) = Cov(z, s)′Var(s)−1Cov(θ, s) = Cov(E(θ |s), z), (A.6)

here the second equality follows from the equality E(θ |s) =

ov(θ, s)′ Var(s)−1s (Lemma 1). As a result, β = 0 by (A.2) and
α = Var(s)−1Cov(θ, s) by (A.1), (A.4) and (A.6). It follows that

E(θ |s, z) = Cov(θ, s)′Var(s)−1s = E(θ |s).

The proof is completed. □

Proof of Proposition 1. Before providing the proof, we first
present a formula for calculating the expected utility at the opti-
mal demand E(θ |Fi)−p

ρi Var(θ |Fi)
(where p ∈ Fi):

E
[
− exp

{
−ρi

E(θ |Fi) − p
ρi Var(θ |Fi)

(θ − p)
}]

= −E
[
exp

{
−
E(θ − p|Fi)2

2 Var(θ |Fi)

}]
= −

(
1 +

Var(θ − p) − Var(θ − p|Fi)
Var(θ |Fi)

)−
1
2

= −

√
Var(θ |Fi)
Var(θ − p)

, (A.7)

here the second equality is because if z is normally distributed
ith mean zero, then[
exp

{
−

1
2
z2

}]
= (1 + Var(z))−

1
2 .

We now show the proposition. Note that E(θ |E(θ |y i), y i, p2) =

E(θ |y i, p2). Suppose that the two economies are not equivalent.
We first show, by contradiction, that E(θ |y i, p2) ̸= E(θ |E(θ |y i),
p2) for at least one i. Indeed, if

E(θ |y i, p2) = E(θ |E(θ |y i), p2)

for every i, then

Var(θ |y i, p2) = Var(θ |E(θ |y i), p2)

by the Law of Total Variance for every i, implying that p2 is
also an equilibrium price of Economy 1 because the market-
clearing condition in Economy 1 also holds by replacing p1 with
p2. Because we have assumed in this study that the linear equi-
librium is unique, p2 = p1 almost surely, denoted as p. As
a result, E(θ |y , p) = E(θ |E(θ |y ), p) almost surely for every i
i i
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and the two economies are thus equivalent by Proposition 2, a
contradiction. Therefore, E(θ |y i, p2) ̸= E(θ |E(θ |y i), p2) for some i.
It then follows from the Law of Total Variance that Var(θ |y i, p2) <

Var(θ |E(θ |y i), p2). The conclusion follows from (A.7). □

Proof of Proposition 2. We first show the necessity. By virtue of
(1), we have

x∗

i,1 =
E(θ |F1

i ) − p
ρi Var(θ |F1

i )
, (A.8)

where p is the (common) equilibrium price of the two economies.
As p ∈ F1

i and the conditional variance Var(θ |F1
i ) is a constant

under normality settings, by the tower property of conditional
expectation we obtain

E(x∗

i,1|p) =
E(θ |p) − p

ρi Var(θ |F1
i )

. (A.9)

A similar expression can be given for the conditional expectation
E(x∗

i,2|p) by replacing Var(θ |F1
i ) with Var(θ |F2

i ) in (A.9). Since
x∗

i,1 = x∗

i,2 almost surely, we have from (A.9) that Var(θ |F1
i ) =

Var(θ |F2
i ),

23 and further from (A.8) that E(θ |F1
i ) = E(θ |F2

i ),
i.e., E(θ |E(θ |y i), p) = E(θ |y i, p) almost surely for every i. The
necessity follows.

Now, we show the sufficiency. It follows from the Law of
Total Variance Var(θ ) = Var(E(θ |·)) + E(Var(θ |·)) and the suffi-
ciency condition E(θ |y i, p) = E(θ |E(θ |y i), p) that Var(θ |y i, p) =

Var(θ |E(θ |y i), p). The preceding two equalities and the market-
clearing condition imply that when p is an equilibrium price of
one of the two economies, it is also the equilibrium price of the
other one. Hence, xiav = xidi almost surely, by the optimal demand
(1), implying the equivalence. □

Proof of Theorem 1. By virtue of Proposition 2, it suffices to
show that

p = E(θ |y) +
nVar(θ |y)∑n

i=1
1
ρi

u

is an equilibrium price in Economy 2 and satisfies that

E(θ |E(θ |y i), p) = E(θ |y i, p)

almost surely for every i. Indeed, when the network graph is
complete, y i = y for every i. Then for the price

p = E(θ |y) +
nVar(θ |y)∑n

i=1
1
ρi

u,

t clearly holds that

(θ |E(θ |y), p) = E(θ |E(θ |y), u) = E(θ |E(θ |y)) = E(θ |y)

nd E(θ |y, p) = E(θ |y, u) = E(θ |y) by the independence of u
nd y, and Lemma 2. This price also satisfies the market-clearing
ondition in Economy 2, noting that

23 We thank the referee for suggesting this simple method. An alternative
approach is to apply formula (A.7).
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n

i=1

E(θ |E(θ |y), p) − p
ρi Var(θ |E(θ |y), p)

+ nu =

n∑
i=1

E(θ |y) − p
ρi Var(θ |y)

+ nu = 0,

where we use the equality Var(θ |E(θ |y), p) = Var(θ |y), which fol-
ows from the Law of Total Variance and the relation
(θ |E(θ |y), p) = E(θ |y) that we proved above. The proof is
omplete. □

roof of Proposition 3. Suppose the two economies are equiv-
lent and let p = π′y + γ u be the same equilibrium price of the
wo economies. Denote S = {i|Ni ̸= {1, . . . , n}}. As the network
raph is not complete, S ̸= ∅. By Proposition 2, E(θ |y i, p) =

(θ |E(θ |y i), p) almost surely for every i. Hence, if there exists
∈ S such that Cov(θ, y i) ̸= cCov(p, y i) for any c ̸= 0, then

nvoking Lemma 5, we obtain

(θ |E(θ |y i), p) = E(θ |y i, p) = E(θ |y i) = E(θ |E(θ |y i))

almost surely, where the last equality follows from Lemma 2.
The Law of Total Variance then indicates that Var(θ |E(θ |y i), p) =

ar(θ |E(θ |y i)), contradicting Assumption 2.
Thus, for any i ∈ S , Cov(θ, y i) = ciCov(p, y i), or equivalently,

ov(θ, y i) = Cov(π′y/ci, y i)

or some ci ̸= 0. Observe that Nj = {1, . . . , n} for any j ∈

{1, . . . , n}/S. Noticing that Cov(θ, yi) > 0 for every i (Assump-
ion 1), and the network graph is strongly connected, we have

ov(θ, y) = Cov(π′y/c, y)

or some c ̸= 0. As a result,

/c = Var(y)−1Cov(θ, y).

hat is, for some c ̸= 0,

p = π′y + γ u = cCov(θ, y)′Var(y)−1y + γ u = cE(θ |y) + γ u,

where we use the fact E(θ |y) = Cov(θ, y)′Var(y)−1y (Lemma 1).
It remains to show that c > 0 and γ > 0. Observe that

Cov(θ,E(θ |y i)) = Var(E(θ |y i)) = Cov(θ, y i)
′Var(y i)

−1Cov(θ, y i) > 0

for every i, since Cov(θ, y i) ̸= 0 by Assumption 1, where the
first equality follows from Lemma 3 (i), and the second from
E(θ |y i) = Cov(θ, y i)′Var(y i)−1y i (Lemma 1). With the preceding
relation, it follows from the independence of u and the other
random variables and Proposition 5 in Lou r⃝ al. (2019) that

Cov(θ, p) = c Cov(θ,E(θ |y)) = c Var(E(θ |y)) > 0.

Observe that

Var(E(θ |y)) = Cov(θ, y)′Var(y)−1Cov(θ, y) > 0

since Cov(θ, y) ̸= 0 by Assumption 1. The two preceding relations
imply that c > 0. Furthermore, Proposition 2 in Lou r⃝ al. (2019)
also informs us that γ > 0. The proof is complete. □

Proof of Proposition 4. This relation clearly holds for any i
with Ni = {1, . . . , n} (see the arguments at the end of the
proof of Theorem 1). We next consider the index i with Ni ̸=

{1, . . . , n}. Observing (A.1), (A.2) and (A.3) with the identity z =

p = cE(θ |y) + γ u and s = y i, it is observed that E(θ |y i, p) =

E(θ |E(θ |y i), p) almost surely if and only if the following two
equalities hold:
Cov(p, θ ) − Cov(θ, y i)′Var(y i)−1Cov(p, y i)
Var(p) − Cov(p, y i)′Var(y i)−1Cov(p, y i)

=
Var(E(θ |y i)) Cov(θ, p) − Cov(θ,E(θ |y i)) Cov(E(θ |y i), p)

Var(p) Var(E(θ |y i)) − Cov(E(θ |y i), p)2
, (A.10)[

Var(y i) −
Cov(p, y i)Cov(p, y i)′

]−1 [
Cov(θ, y i) −

Cov(p, θ )
Cov(p, y i)

]

Var(p) Var(p) f
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=
Var(p) Cov(θ,E(θ |y i)) − Cov(E(θ |y i), p) Cov(θ, p)

Var(p) Var(E(θ |y i)) − Cov(E(θ |y i), p)2
Var(y i)

−1Cov(θ, y i),

(A.11)

here we use the fact E(θ |y i) = Cov(θ, y i)′Var(y i)−1y i
Lemma 1).

We first consider (A.10). Observe the following series of rela-
ions:

ov(θ, y i)
′Var(y i)

−1Cov(p, y i) = Cov(p,E(θ |y i)) (Lemma 1),
Var(E(θ |y i)) = Cov(θ,E(θ |y i)) (Lemma 3 (i)),

(A.12)
Cov(E(θ |y i), p) = c Cov(E(θ |y i),E(θ |y))

= c Var(E(θ |y i)) (Lemma 3 (ii)),
(A.13)

Cov(θ, p) = c Cov(θ,E(θ |y))
= c Var(E(θ |y)) (Lemma 3 (i)),

(A.14)

nd Var(E(θ |y)) > Var(E(θ |y i)) (see Remark 1 for the derivation).
e then have Cov(θ, p) ̸= Cov(p,E(θ |y i)). Consequently, (A.10)

s equivalent to

1
Var(p) − Cov(p, y i)′Var(y i)−1Cov(p, y i)

=
Var(E(θ |y i))

Var(p) Var(E(θ |y i)) − Cov(E(θ |y i), p)2
,

or further equivalent to

Cov(p, y i)
′Var(y i)

−1Cov(p, y i) Var(E(θ |y i)) = Cov(E(θ |y i), p)
2.

(A.15)

y Lemma 3 (iii), we have

ov(p, y i) = cCov(E(θ |y), y i) = cCov(θ, y i). (A.16)

t is easily verified that (A.15) indeed holds, noting (A.13) and the
quality

ov(p, y i)
′Var(y i)

−1Cov(p, y i) = c2Cov(θ, y i)
′Var(y i)

−1Cov(θ, y i)

= c2Cov(θ,E(θ |y i))

= c2 Var(E(θ |y i)),

here the first equality follows from (A.16), the second from the
xpression E(θ |y i) = Cov(θ, y i)′Var(y i)−1y i (Lemma 1), and the
hird from (A.12). As a summary, the above analysis shows that
or any c > 0 and γ > 0, the price function p = cE(θ |y) + γ u
atisfies (A.10).
We now turn to (A.11). Noting (A.12), we see that (A.11) is

quivalent to

ov(θ, y i) −
Cov(p, θ )
Var(p)

Cov(p, y i)

=
Var(p) Var(E(θ |y i)) − Cov(E(θ |y i), p) Cov(θ, p)

Var(p) Var(E(θ |y i)) − Cov(E(θ |y i), p)2

×

[
Im −

Cov(p, y i)Cov(p, y i)′

Var(p)
Var(y i)

−1
]
Cov(θ, y i)

=
Var(p) Var(E(θ |y i)) − Cov(E(θ |y i), p) Cov(θ, p)

Var(p) Var(E(θ |y i)) − Cov(E(θ |y i), p)2

×

[
Cov(θ, y i) −

Cov(p,E(θ |y i))
Var(p)

Cov(p, y i)
]

. (A.17)

ith (A.16), (A.14), and (A.13), it is easy to see that (A.17) is

urther equivalent to
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[
1 −

Var(E(θ |y))
Var(p)

c2
]
Cov(θ, y i)

=
Var(p) Var(E(θ |y i)) − c2 Var(E(θ |y i)) Var(E(θ |y))

Var(p) Var(E(θ |y i)) − c2 Var(E(θ |y i))2

×

[
1 −

Var(E(θ |y i))
Var(p)

c2
]
Cov(θ, y i).

Because Cov(θ, y i) ̸= 0 (Assumption 1), the preceding equality is
also equivalent to

1 −
Var(E(θ |y))c2

Var(p)
=

Var(p) Var(E(θ |y i)) − c2 Var(E(θ |y i)) Var(E(θ |y))
Var(p) Var(E(θ |y i)) − c2 Var(E(θ |y i))2

×

[
1 −

Var(E(θ |y i))c2

Var(p)

]
.

ow, with Var(p) = c2 Var(E(θ |y)) + γ 2 Var(u), it can be verified
hat the preceding equality is always true. That is, for any c > 0
and γ > 0, (A.11) holds for the price function p = cE(θ |y) + γ u.
he proof is complete. □

roof Theorem 3. Note that there exists at least one index, say
, such that the weight given to signal yi in E(θ |y) is nonzero
ecause, otherwise, E(θ |y) = 0 almost surely, contradicting
ssumption 1. For this signal structure, we construct a net-
ork graph as follows: Select one index j ̸= i, and let Nj =

1, . . . , n}/{i} and Nr = {1, . . . , n} for every r ̸= j. That is, this
raph includes all possible arcs except for the arc from i to j.
From the market-clearing condition

n∑
i=1

E(θ |E(θ |y i), p) − p
ρi Var(θ |E(θ |y i), p)

+ nu

=
E(θ |E(θ |y j), p) − p
ρj Var(θ |E(θ |y j), p)

+

∑
r ̸=j

E(θ |E(θ |y), p) − p
ρr Var(θ |E(θ |y), p)

+ nu

= 0, (A.18)

t can be seen that the equilibrium price can be expressed as a
inear form p = b1E(θ |y j)+b2E(θ |y)+γ u, where b1, b2, and γ are
constants. We can show by contradiction that b2 ̸= 0. Otherwise,
uppose p = b1E(θ |y j) + γ u. From (A.3), with the identity z = p
and s = y, we see that the coefficient on E(θ |y) in E(θ |E(θ |y), p)
equals

Var(p) Cov(θ,E(θ |y)) − Cov(E(θ |y), p) Cov(θ, p)
Var(p) Var(E(θ |y)) − Cov(E(θ |y), p)2

. (A.19)

Noting the series of relations:

Var(p) = b21 Var(E(θ |y j)) + γ 2 Var(u),

Cov(θ,E(θ |y)) = Var(E(θ |y)) (Lemma 3 (i)),

Cov(E(θ |y), p) = b1 Cov(E(θ |y),E(θ |y j))

= b1 Var(E(θ |y j)) (Lemma 3 (ii)), (A.20)

Cov(θ, p) = b1 Cov(θ,E(θ |y j))

= b1 Var(E(θ |y j)) (Lemma 3 (i)) (A.21)

and Var(E(θ |y j)) < Var(E(θ |y)) (see the arguments about the
inequality in Remark 1), the term in (A.19) does not equal zero.
As a result, the market-clearing condition (A.18) is impossible to
hold for the price function p = b1E(θ |y j) + γ u. Hence, b2 ̸= 0.

For the price function p = b1E(θ |y j) + b2E(θ |y) + γ u, it holds
that

Cov(θ − E(θ |y ), p) = b [Var(E(θ |y)) − Var(E(θ |y ))] ̸= 0,
j 2 j
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where the equality uses (A.20) and (A.21). It then follows from
Lemma 4 that Assumption 2 holds. However, for the given sig-
nal structure and the accordingly constructed network graph,
(6) is impossible to hold for any positive γ and c . The two
economies are thus not equivalent under the constructed graph
by Theorem 2. The proof is complete. □

Proof Theorem 4. We assume that all signals are normally
distributed with means zero and consider the following signal
structure: Var(yi) = 1, Cov(θ, yi) > 0 for every i but
n∑

i=1

Cov(θ, yi)2 < Var(θ ),

and for every i, yi is independent of {yj, j ̸= i}. Under this signal
structure,

E(θ |y) =

n∑
i=1

Cov(θ, yi)yi, E(θ |y i) =

∑
j∈Ni

Cov(θ, yj)yj.

The preceding two equalities imply that the strict inequality
assumption in Assumption 1 holds. We also see that the variance–
covariance matrix of random vector (θ, y ′)′ is positive definite
because, otherwise, on the one hand it follows from the indepen-
dence of {yi, i = 1, . . . , n} that Var(θ |y) = 0, but, on the other
hand,

Var(θ |y) = Var(θ ) − Var(E(θ |y)) = Var(θ ) −

n∑
i=1

Cov(θ, yi)2 > 0,

a contradiction. Hence, Assumption 1 holds.
We complete the proof by contradiction. Suppose that the two

economies are equivalent and let p = π′y + γ u denote the
common equilibrium price. Proposition 7 (i) in Lou r⃝ al. (2019)
shows that the weight on each signal yi in the equilibrium price
p is positive, that is, πi > 0 for every i. We have

Cov(θ, p) =

n∑
i=1

πi Cov(θ, yi),

and for any i with Ni ̸= {1, . . . , n},

Cov(E(θ |y i), p) = Cov
(∑
j∈Ni

Cov(θ, yj)yj, p
)

=

∑
j∈Ni

πj Cov(θ, yj),

implying that, together with Lemma 4, Assumption 2 holds. Fur-
thermore, by the equivalence assumption and Theorem 2, there
exist c > 0 and γ > 0 such that (6) holds, i.e.,

γ

n∑
i=1

γ 2 Var(u)
ρi{γ 2 Var(u)ai + [γ 2 Var(u) + c2ai][Var(θ ) − Var(E(θ |y))]}

×

∑
j∈Ni

Cov(θ, yj)yj = c
n∑

i=1

Cov(θ, yi)yi

lmost surely. Therefore, on the one hand, by matching the coef-
icients on both sides of the preceding equality, we see that the
calar∑
{j|i∈Nj}

1
ρj{γ 2 Var(u)aj + [γ 2 Var(u) + c2aj][Var(θ ) − Var(E(θ |y))]}

(A.22)

oes not vary over the index i, where

j = Var(E(θ |y)) − Var(E(θ |y j)) =

∑
Cov(θ, yr )2.
r ̸∈Nj
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γ

nρ

n∑
i=1

γ 2 Var(u) + (c2 − c)( 1
τθ +|Ni|τϵ

−
1

τθ +nτϵ
)

[γ 2 Var(u) 1
τθ +|Ni|τϵ

+ c2( 1
τθ +|Ni|τϵ

−
1

τθ +nτϵ
)] 1

τθ +|Ni|τϵ
− c2( 1

τθ +|Ni|τϵ
−

1
τθ +nτϵ

)2
= 1,

Box II.
γ 3 Var(u)
cnρ

∑
{j|i∈Nj}

τϵ
τθ +|Nj|τϵ

[γ 2 Var(u) + c2( 1
τθ +|Nj|τϵ

−
1

τθ +nτϵ
)] 1

τθ +|Nj|τϵ
− c2( 1

τθ +|Nj|τϵ
−

1
τθ +nτϵ

)2
=

τϵ

τθ + nτϵ

,

Box III.
γ 3 Var(u)
cnρ

∑
{j|i∈Nj}

1
τθ +|Nj|τϵ

[γ 2 Var(u) + c2( 1
τθ +|Nj|τϵ

−
1

τθ +nτϵ
)] 1

τθ +|Nj|τϵ
− c2( 1

τθ +|Nj|τϵ
−

1
τθ +nτϵ

)2
=

1
τθ + nτϵ

,

Box IV.
S

Note that for any non-complete graph, there always exist two
nodes which have different sets of out-neighbors, say, i and j are
two nodes such that {r|i ∈ Nr} ̸= {r|j ∈ Nr}. However, on the
ther hand, we can select the values for {Cov(θ, yi)} such that
A.22) does not equal for nodes i and j, raising a contradiction.
he proof is complete. □

roof Corollary 1. Denote τθ =
1

Var(θ ) and τϵ =
1

Var(ϵi)
. Under the

signal structure in Assumption 3,

Var(θ |y i) =
1

τθ + |Ni|τϵ

, E(θ |y i) =
τϵ

τθ + |Ni|τϵ

∑
j∈Ni

yj

nd

i = Var(E(θ |y)) − Var(E(θ |y i)) =
1

τθ + |Ni|τϵ

−
1

τθ + nτϵ

.

Then (5) and (6) respectively reduce to the equation given in
ox II, which is exactly (7) by some simple computations, and

γ 3 Var(u)
cnρ

n∑
i=1

τϵ
τθ +|Ni|τϵ

∑
j∈Ni

yj

[γ 2 Var(u) + c2ai] 1
τθ +|Ni|τϵ

− c2a2i

=
τϵ

τθ + nτϵ

n∑
i=1

yi almost surely.

atching the coefficients in the preceding equality leads to the
ase that for every i, as given in Box III, or, equivalently as in
ox IV, which is exactly (8) by some simple computations. □

Proof Corollary 2. When the network graph is k-regular, that is,
|Ni| = k for every i, Eqs. (7) and (8) respectively reduce to

γ

ρ

γ 2 Var(u) + (c2 − c)( 1
τθ +kτϵ

−
1

τθ +nτϵ
)

γ 2 Var(u) 1
τθ +kτϵ

+ c2( 1
τθ +kτϵ

−
1

τθ +nτϵ
) 1
τθ +nτϵ

= 1,

kγ 3 Var(u)
cnρ

τθ + nτϵ

γ 2 Var(u) + c2 (n−k)τϵ
(τθ +nτϵ )2

= 1.
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Equivalently, letting 1/γ = δ, the preceding two equations can
be respectively rewritten as

1
ρ

Var(u) + δ2(c2 − c)( 1
τθ +kτϵ

−
1

τθ +nτϵ
)

Var(u) 1
τθ +kτϵ

+ δ2c2( 1
τθ +kτϵ

−
1

τθ +nτϵ
) 1
τθ +nτϵ

= δ, (A.23)

kVar(u)
nρ

τθ + nτϵ

Var(u) + δ2c2 (n−k)τϵ
(τθ +nτϵ )2

= δc. (A.24)

We obtain a positive solution for δc , denoted a∗, from Eq. (A.24),
considering that it is a cubic equation of the variable δc . It follows
that

Var(u) + (a∗)2
(n − k)τϵ

(τθ + nτϵ)2
=

kVar(u)(τθ + nτϵ)
nρa∗

.

ubstituting the preceding expression into Eq. (A.23) yields

Var(u) + δ2(c2 − c)( 1
τθ +kτϵ

−
1

τθ +nτϵ
)

k(τθ +nτϵ )
n(τθ +kτϵ )

Var(u)
a∗

= δ.

Multiplying both sides of the preceding equation by c , with a∗ =

δc in mind, leads to

c[Var(u) + a2
∗
( 1
τθ +kτϵ

−
1

τθ +nτϵ
)] − a2

∗
( 1
τθ +kτϵ

−
1

τθ +nτϵ
)

k(τθ +nτϵ )
n(τθ +kτϵ )

Var(u)
a∗

= a∗,

from which we obtain a solution for c:

c∗ =

k(τθ +nτϵ )
n(τθ +kτϵ )

Var(u) + a2
∗
( 1
τθ +kτϵ

−
1

τθ +nτϵ
)

Var(u) + a2
∗
( 1
τθ +kτϵ

−
1

τθ +nτϵ
)

> 0.

As a consequence, we obtain a positive solution δ∗ = a∗/c∗ and
then γ∗ = 1/δ∗.

The non-equivalence between the two economies for chain
and star graphs can be seen by noting that the term in the
summation of (8) in Corollary 1 is monotonically increasing in
|Nj|, and then (8) is impossible to hold for every i. The proof is
completed. □

Proof Theorem 5. Let p = cθ + γ u be the price function,
where the two constants c and γ will be determined by the
market-clearing condition shown below. Consider some inde-
pendent subnetwork in an m-replica economy as A . The total
m
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d∑
emand of the n traders in the subnetwork at price p is given by
n

i=1

E(θ |y i) − p
ρ Var(θ |y i)

=

n∑
i=1

∑
j∈Ni

τϵjyj
ρ

−

n∑
i=1

τθ +
∑

j∈Ni
τϵj

ρ
p

=
1
ρ

⎛⎝ n∑
i=1

∑
j∈Ni

τϵj (θ + ϵj) −

n∑
i=1

⎛⎝τθ +

∑
j∈Ni

τϵj

⎞⎠ p

⎞⎠ .

Now, consider the large economy A, which is the limit of the se-
quence of {Am}. As noise terms are mutually independent across
traders and the replica subnetworks have an identical network
structure, the noise will disappear in the average of the total
demand of traders in the large economy by applying the Law of
Large Numbers. Therefore, the price given in the theorem satisfies
the market-clearing condition in the large economy. By Lemma 1,
with some simple computations, the price given in this theorem
also satisfies the condition E(θ |y i, p) = E(θ |E(θ |y i), p) almost
surely for every i. It thus follows from Proposition 2 that the two
large economies A1 and A2 are equivalent. This completes the
proof. □
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