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Abstract

We study a rational expectations equilibrium economy where agents can learn from the

actions of others by adopting the simple average of ex ante optimal strategies of their social

network. When information is exogenous, large social networks benefit all agents if and

only if agents are relatively homogeneous in terms of information precision. In contrast, a

setting where both information acquisition and network formation are endogenous leads

to small social networks of just two or three agents in equilibrium. However, each agent

would benefit if larger networks were imposed on the entire economy by a central agent.
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1 Introduction

Price theory prescribes that prices are determined in equilibrium of supply and demand. In

classical models of financial markets, supply (noise trade) is exogenous and it is thus demand

that determines prices. Demand is influenced by information about fundamentals, and how

costly information is acquired and reflected in asset prices has been an important topic in

economics going back to Grossman and Stiglitz (1980) and Hellwig (1980). A more recent liter-

ature integrates findings on information propagation through social networks into models with

information acquisition and asset pricing, see Colla and Antonio (2010), Ozsoylev and Walden

(2011), Han and Yang (2013), or Walden (2019). These studies are based on the assumption

that agents voluntarily share information with other members of their social network.

In this paper, we study an alternative, simpler protocol of social learning which can intrin-

sically improve the allocative efficiency. Agents only observe the ex ante optimal strategies of

other members in their social network and follow a simple heuristic to incorporate information

contained in these strategies: They replicate the average of the ex ante optimal strategies of all

other agents in their social network. Instead of learning about the signals received by others,

agents in our model directly follow the actions of others. In many situations, agents might not

be willing to disclose their own information, for example for privacy concerns. Actions are also

typically more salient than signals, and learning from them is thus plausible from a positive

perspective. Our aim is to introduce the idea of the simple average of ex ante optimal strategies

(SAEAOS) into models of rational expectations economies, and to analyze its implications on

the welfare of agents, as well as on information acquisition and other market quality measures.

In the literature on information aggregation, the heuristic of taking the simple average is

widely regarded as an efficient approach to reduce noise in individuals’ decisions and forecasts,

and to form wisdom of crowds (DeMarzo et al. 2003; Golub and Jackson 2010; Jadbabie et al.

2012; Kahneman et al. 2021; Surowiecki 2004). For example, Kahneman et al. (2021, p. 261)

state that “The easiest way to aggregate several forecasts is to average them. Averaging is

mathematically guaranteed to reduce noise: specifically, it divides it by the square root of the

number of judgments averaged.” As a reasonable first approach, we herein extrapolate this

heuristic for an agent that only observes the ex ante actions of others, and aggregates the
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contained information by following their average. While averaging is natural and, as we will

show, potentially improves the efficiency of equilibrium allocations, we do not claim that it is

optimal. Building a theory of optimally aggregating the information contained in the actions

of others goes beyond the scope of this paper.

Our model is based on the classical noisy rational expectations equilibrium economy of

Hellwig (1980) populated by a large number of agents with constant absolute risk aversion.

The market consists of a risk-free asset in perfect elastic supply and a risky asset in random,

normal supply. The fundamentals of the risky asset and signals received by the agents are also

normally distributed. We then extend this basic model by dividing the large economy into a

large number of small, disjoint social groups. The key feature of our model is that, in each

group, agents can form networks that jointly decide on a protocol of adopting the SAEAOS.

We start with the case where information is exogenous and characterize under what con-

ditions agents are better off when adopting the SAEAOS of a given network. We find that

the decision to join a network and adopt the SAEAOS thereof only depends on the structure

of exogenous signal precisions and not on other model parameters. When agents’ information

precision is relatively homogenous, then larger social networks adopting the SAEAOS lead to

better welfare for all agents involved. In contrast, when there is large variety in information

precision across agents, those agents with large precision are not interested in joining networks

with smaller average precision.

We then consider the case of endogenous information acquisition, first with exogenously

imposed network structure and then in a setting where both information acquisition and net-

work formation are endogenous. When the network structure is imposed exogenously and social

groups are homogenous in terms of risk aversion, then endogenous information acquisition leads

to homogenous information precision across each social network.

One of our main findings is that settings where agents can decide both on information

acquisition and network formation lead to small social networks of just two or three agents.

On the one hand, agents benefit from averaging their ex ante strategy with that of one or two

other agents due to a reduction in noise, and small networks are thus superior to solitary action.

On the other hand, and perhaps more surprisingly, larger network are not stable because each

individual network has an incentive to disintegrate into smaller ones. Large networks generally
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lead to a reduction in information acquisition as agents attempt to free-ride on the information

contained in the ex ante strategies of others and their own signal translates to a smaller weight

in the SAEAOS that is eventually implemented. In such a situation, members of a large network

are incentivized to disintegrate into smaller networks where they would increase information

acquisition.

While large social networks are not stable when network formation is endogenous as just

discussed, we find that everyone would benefit if the entire economy could agree to adopting

the SAEAOS across all social groups. That is, if a social planner or central authority could

impose a network structure ex ante, then the resulting expected welfare of each agent would

be larger than in the setting where networks form endogenously. Furthermore, agents would

benefit more from larger networks of adopting the SAEAOS. As a policy implication, our results

indicate that, in some settings, economies can benefit from greater transparency about actions.

The underlying reason for this result is that a commitment to adopting the SAEAOS in all

social groups of the economy leads to a reduction in information acquisition. Lower information

acquisition corresponds to asset prices that are riskier. But lower information acquisition also

increases the expected return of the risky asset, a consequence coined return effect in He et al.

(2021). Furthermore, lower information acquisition also directly reduces the costs spent on

acquiring information. Together, these effects outweigh the loss in welfare due to riskier assets.

In closing, we investigate how imposing the SAEAOS on the economy affects important

market quality measures. Conforming with the intuition provided above, we find that informa-

tion acquisition is indeed reduced. We further find that imposing the SAEAOS on all social

groups in the economy: reduces market efficiency (the degree with which market prices reflect

information on fundamentals); reduces market liquidity (i.e., increases the sensitivity of prices

to variation in supply); reduces trading volume; and increases return volatility. These results

conform with the findings of Han and Yang (2013), who study an economy where informed

agents voluntarily share a noisy version of their private signal with other members of their

social network.

The remainder of this paper is organized as follows. We review the related literature in

Section 2. In Section 3, we introduce the model for the economy and the concept of adopting

the SAEAOS within a social network. Our main results are in Sections 4 and 5, which treat
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the cases of exogenous and endogenous information acquisition respectively. We conclude the

paper in Section 6. All proofs are delegated to the Appendix.

2 Related Literature

Our paper is related to the following three lines of research. First, our study directly con-

tributes to the vast literature on the welfare analysis of rational expectation economies and

Bayesian market games with incomplete information. Vives (1988) considers large Cournot

markets where firms receive noisy private signals about random demands. He finds that in-

complete information generally leads to a reduction in welfare and that the loss in welfare is

increasing in the cost of information acquisition when information is endogenous. Morris and

Shin (2002), Angeletos and Pavan (2004) and Angeletos and Pavan (2007) investigate quadratic

Bayesian games with strategic complementarity or strategic substitutability where agents can

receive noisy private information as well as exogenously given public information. They find

that whether higher precision of public information improves welfare is ambiguous in general

and specific to the strategic and external effects defined in the utility and social welfare func-

tions. Different from the above literature in which public information is exogenously given, in

market games studied in Vives (1997), Burguet and Vives (2000), Amador and Weill (2012),

Vives (2017), Bayona (2018) and Heumann (2021) the public information is the price which is

endogenously determined.1 These works typically analyze whether an equilibrium allocation

is socially optimal from the viewpoint of a social planner. Another important question of re-

search is commonly investigated is how equilibrium welfare can be further improved by taking

decentralized strategies that are required to be measurable with respect to their own private

information (as well as the public information, if any). When there is a decentralized welfare

benchmark, the social planner is only able to control how an agent’s actions depend on her

own information, but cannot make an agent’s actions depend on other agents’ private signals.

In this line of research, private information cannot be transferred from one agent to another.

1Burguet and Vives (2000) and Amador and Weill (2012) respectively consider a dynamic model with private

information and public information which is a noisy statistic of agents’ past actions (playing a similar role as

prices). They find that improving the precision of public information allows agents to reduce acquisition on

their private signals and then potentially reduces social welfare.
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Due to the externality of both learning and information, the socially-optimal solution generally

deviates from market equilibrium solutions. Different from these studies, we herein consider

an environment of social networks where agents have the option to follow the SAEAOS. This

leads to unmeasurable strategies with respect to the private information of a single agent since

they indirectly depend on the information obtained by other agents.

Second, our paper contributes to the recent strand of theoretical (Colla and Antonio 2010;

Han and Yang 2013; Lou and Yang 2022; Manela 2014; Ozsoylev and Walden 2011; Walden

2019)2 and experimental research (Halim et al. 2019) on the implications of information sharing

on market outcomes.3 Ozsoylev and Walden (2011) analyze how the network connectedness

of a large economy influences price volatility, trading volume, welfare, and other measures of

interest. They find that the ex ante certainty equivalent of agents is either globally decreasing,

or initially increasing and eventually decreasing in network connectedness. Manela (2014)

analyzes the effect of the speed of information diffusion on the welfare of agents and shows

that the value of information is hump-shaped in the diffusion speed. Walden (2019) considers

a dynamic model for a rational expectations economy with decentralized information diffusion

through a general network. He shows that more central agents make higher profits, and,

consistent with the findings in Colla and Antonio (2010) and Ozsoylev and Walden (2011), that

agents that are close to each other have more positively correlated trades. While these papers

assume that the information is exogenously given, Han and Yang (2013) and Halim et al. (2019)

investigate the effect of social communication on market outcomes when information acquisition

2The another relevant line is information percolation in populations and markets where agents meet each

other over time and exchange information to each other, and the information gathered is further shared at

subsequent pairwise meetings (Duffie et al. 2010, 2009; Duffie and Manso 2007). Duffie et al. (2009) find that

improving public signals for agents reduces their endogenous efforts in searching for other agents from whom

they can share information, and then maybe reduce social welfare. While in most of the above literature, it is

assumed that agents have no incentive to not share information with their neighbors since agents know that

they and their neighbors have no price impact. Differently Indjejikian et al. (2014) and Goldstein et al. (2021)

consider strategic settings where some agents have endogenous incentive to voluntarily leak their information

to other agents to increase their welfare by impacting prices.
3There also has been some empirical work on the effects of social communication on trading behavior of

investors, see for instance, Hong et al. (2004), Hong et al. (2005), Heimer (2016), Pool et al. (2015), Ozsoylev

et al. (2014), etc.
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is endogenous. Han and Yang (2013) show that social communication reduces the endogenous

fraction of informed agents and thereby harms market efficiency, reduces trading volume, and

improves welfare. Halim et al. (2019) show that social communication provides an incentive for

agents to free ride on other agents’ information and consequently reduces the overall information

in the market. In contrast to these studies, agents in our model cannot directly observe their

neighbors’ signals. Instead, they can observe the actions of other agents in their network and

adopt the SAEAOS if this is to their benefit. The welfare implications of this mechanism are

quite different from that in Ozsoylev and Walden (2011) and Lou and Yang (2022). While the

learning mechanism of direct information sharing in Ozsoylev and Walden (2011) and Lou and

Yang (2022) cannot always lead to a Pareto improvement4 depending on model parameters,

our results show that for a relatively homogenous distribution of risk-aversion coefficients and

signal precisions, the SAEAOS can always improve all agents’ ex-ante welfare for both cases of

exogenous information and endogenous information (with a mild condition).

Third, our work is also related to the literature on non-Bayesian learning over networks,

for example, DeMarzo et al. (2003), Golub and Jackson (2010), Jadbabie et al. (2012) and

Molavi et al. (2018). In this literature, the mechanism of averaging often plays a powerful

role in reducing noises in agents’ decisions (Kahneman et al. (2021)). Borrowing the averaging

approach proposed by Degroot (1974), DeMarzo et al. (2003) study a learning model where

agents receive independent noisy signals about the true value of nature. They communicate

with their neighbors in a social network, and update beliefs by repeatedly taking the weighted

average of the neighbors’ opinions. They show that the believes in the network converge to a

consensus belief, and that this consensus belief is correct if the network structure is balanced.

Following DeMarzo et al. (2003), Golub and Jackson (2010) further show that agents’ beliefs

can be asymptotically accurate as the network becomes large even if it may not be optimal in

finite societies. Different from these studies, we herein do not consider the accuracy of agents’

opinions on the unknown state of nature, but instead consider an exchange economy and focus

on the analysis of the effects of following others through their actions by adopting the SAEAOS.

4It is the case even if the coefficients of risk aversion and signal precision are the same across all agents in

the economy.
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3 The Economy

Our model builds on the finite-agent noisy rational expectations equilibrium economy of Hellwig

(1980). There are n agents who are trading a risk-free and a risky asset. The risky asset has

fundamental value θ ∼ N(0, 1/τθ), τθ > 0. Let Wi,0 denote the initial wealth of agent i and

xi the holdings of the risky asset of agent i, i = 1, . . . , n. The wealth of agent i at the end

of the investment period is then given by Wi(xi) = wi,0 + xi(θ − p), where p is the price of

the risky asset. This price is publicly observable by all agents. The preferences of the agents

in our model are represented by CARA utility functions with risk aversion coefficient ρi, i.e.,

the utility agent i derives from wealth w is given by Ui(w) = − exp(−ρiw). We can therefore

assume without further loss of generality that wi,0 = 0 for all i = 1, . . . , n. The (stochastic)

terminal utility agent i obtains from adopting strategy xi is given by

Ui (Wi(xi)) = − exp (−ρixi(θ − p)) .

Each agent i observes a private signal yi = θ + ϵi about the fundamental θ, where the noise

ϵi ∼ N(0, 1/τi), τi > 0 denoting the precision of the information of agent i. The strategy

of agent i is allowed to depend on both the private signal and the public price of the risky

asset, i.e., xi = xi(yi, p). Noises in signals are assumed to be independent across agents. We

will subsequently consider economies with exogenous information in Section 4, where τi is

exogenously given for each agent i, and economies with endogenous information in Section 5,

where the agent faces a cost c(τ) for obtaining a signal with precision τ and optimally chooses

a precision that balances informativeness of the signal and resulting cost. To prevent prices

from fully revealing, there is per-capita random supply u of noise traders in the market. The

random per-capita supply satisfies u ∼ N(0, 1/τu), τu > 0, and is independent of other random

variables θ and ϵi, i = 1, ..., n.5

Agents in our model are price takers. To justify this assumption, we adopt the island-

5A criticism from taking the approach of noise trading to prevent prices from being fully revealing is that one

cannot immediately examine the welfare analysis for all agents. We still adopt such an approach for the sake of

simplicity. Our main results on welfare implications do not depend on the amount of noise trading and can be

consequently extended to an otherwise identical economy with random endowment (Diamond and Verrecchia

(1981)), at least when the random endowment is small. Although the method of random endowment can also

prevent prices from being fully revealing and at the same time, allows ones to examine the welfare analysis for
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connection network setting as in Jackson (2008) or Han and Yang (2013) leading to a large

economy.6 We assume that the large economy consists of w ∈ N unconnected social groups

denoted as S1,S2, ...,Sw. Each social groups is formed by n agents. Accordingly, the total

number of agents in the large economy is given by wn. The following assumption imposes a

degree of homogeneity across agents belonging to a given social group.

Assumption 1. Agents within the same group have identical coefficients of risk aversion. When

information is exogenous, we further assume that there is a finite number of profiles of coeffi-

cients of risk aversion and signal precisions in the economy, i.e., (ρi, τi) ∈ {(ρ⋄1, τ ⋄1 ), ..., (ρ⋄m, τ ⋄m)}

for all i, where m ∈ N and {(ρ⋄1, τ ⋄1 ), ..., (ρ⋄m, τ ⋄m)} ∈ R2m
>0 are given. Moreover, as w → ∞, the

fraction of agents with (ρ⋄k, τ
⋄
k ) in all w groups converges to some λk, where 0 < λk < 1 and∑m

k=1 λk = 1. When information is endogenous, we only assume that there is a finite number

of coefficients of risk aversion in the economy, i.e., ρi ∈ {ρ⋄1, ..., ρ⋄m} for all i, where m ∈ N

and {ρ⋄1, ..., ρ⋄m} ∈ Rm
>0 are given. Moreover, as w → ∞, the fraction of agents with ρ⋄k in all w

groups converges to some λk, where 0 < λk < 1 and
∑m

k=1 λk = 1.

Note that homogeneity of social groups solely refers to risk-aversion, and that differences

in signal precision are possible within our model. Explicitly requiring that the number of

profiles of risk aversion and signal precisions remains finite is only necessary when information

acquisition is exogenous. In the case of endogenous information acquisition, it is sufficient

to assume homogeneity of risk aversion across groups and a finite number of coefficients of

risk aversion across the economy. We will later observe that this leads to social groups that

are heterogenous in terms of both risk aversion and information precision when information is

endogenous, cf. Section 5.

The key feature of our model is that agents can adopt the simple average of ex ante optimal

strategies (SAEAOS) of their social network. Formally, for a group Sg and a subset N ⊆ Sg,

all agents, the analysis is more complicated (since there is an additional dimension of random endowment in

agents’ information sets and beliefs on the asset payoff).
6The replica network approach used in Walden (2019) for constructing large economies shares a similar spirit

with the island-connection network approach.
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we denote the SAEAOS of agents in the network N as

x∗
N =

1

|N |
∑
i∈N

x∗
i,g,

where x∗
i,g denotes the optimal strategy for agent i in group g. Agents in a given group Sg can

come together and decide to form a network N ⊆ Sg whereafter each agent in N adopts x∗
N ,

the SAEAOS of agents in N . When |N | = 1, each agent implements his or her own original

strategy, while |N | = n means that all agents in the group join together and adopt the SAEAOS

of the entire social group Sg.
7 Throughout this paper, we will use the term (social) group to

refer to the set of agents Sg that jointly form the large economy in the island-connection setting

and to (social) network to refer to subsets N ⊆ Sg of social groups in which agents adopt the

SAEAOS.

Colla and Antonio (2010), Ozsoylev and Walden (2011), Han and Yang (2013) and Walden

(2019) assume that signals are shared among agents over a social network. The learning mech-

anism through social interactions in our model and this literature is quite different: It is the

action, not the signal, that is shared between agents, and agents learn from the actions of

others by adopting the simple average of their strategies.8 This is a case of bounded rational-

ity:9 Agents do not attempt to infer the signals of other agents in their network received from

communicated ex ante strategies and they learn from others by taking the simple average of all

strategies in the network instead of discriminating and weighting other agents ex ante strategies

based on their attributes. In many situations, it is indeed difficult to infer the signals of others

from their actions if one does not have precise knowledge about others’ signal precision and

risk aversion.

Furthermore, there are two complementary forces that can favor both the sharing of actions

instead of signals and learning from actions instead of signals. First, agents often have concerns

for privacy about information and a desire to protect the source of information. They thus

7In Appendix A, we will introduce a privacy preserving algorithm to implement the SAEOS where all agents

can obtain the simple average of their demand strategies, while no agent knows the strategies of other agents.
8While the new learning mechanism differs from the direct information sharing in the literature, it generates

different welfare implications as shown in the next two sections.
9A similar assumption of bounded rationality where agents are not able to extract information from prices

was for example made in Mondria et al. (2022).
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attempt to hide private signals in many scenarios. In contrast, it is typically difficult to hide

actions as these are often public by nature. The second, and arguably more important, force is

behavioral. Actions are more salient than signals, and sharing actions intuitively more natural.

Consider for example a group of friends discussing their recent investment decisions. It seems

more common that a person directly states that he/she recently purchased Stock A instead of

telling about a signal the person received about the future price of Stock A that has a certain

precision.

4 Exogenous Information

In this section, we assume that the signal precision of agents are exogenously given. We first

introduce the notion of an equilibrium and review existing results on optimal strategies and

equilibrium prices when each agent acts individually.

Definition 1. An equilibrium with exogenous information is a tuple
(
(x∗

i,g)i=1,...,n;g=1,...,∞, p
)

such that

(i) for each i = 1, . . . , n and g = 1, . . . ,∞, x∗
i,g maximizes conditional expected utility for

agent i in group g, i.e.,

x∗
i,g(yi,g, p) ∈ argmax

x
E[Ui,g (Wi,g(x)) |yi,g, p].

(ii) the market clears, i.e.,

lim
w→∞

1

w

w∑
g=1

(
1

n

n∑
i=1

x∗
i,g(yi,g, p)

)
= u.

Following the majority of the literature, we herein focus on linear equilibria, i.e., equilibria

where strategies are linear functions of the signal and price and prices are linear in the signals

and per-capital supply.10 To simplify notation, we will drop the subscript g in the coefficient

of risk aversion ρi,g, signal precision τi,g, and other variables whenever we do not specify which

group agent i belongs to or the meaning is clear from the context. Following the analysis in

10In this paper, we assume that all random variables have mean zero for notational convenience. Hence, there

is no intercept in price function p.
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Hellwig (1980), Ozsoylev and Walden (2011), and Han and Yang (2013), we see that, as w

increases to infinity, the sequence of equilibrium prices of finite-agent economies converges in

probability to

p =
1

∆+ τθ
∆τu+ρ

(∆θ − u), (1)

where

ρ =

(
m∑
k=1

λk

ρ⋄k

)−1

(2)

and

∆ =
m∑
k=1

λk
τ ⋄k
ρ⋄k

(3)

are the average risk aversion and the risk adjusted average signal precision in the economy.

Interestingly, agents’ private signals enter prices in terms of averaged signal precision. All

other things being equal, the larger the risk adjusted average signal precision, the greater is the

weight of the fundamental in determining prices. We further find that the agent i’s equilibrium

strategy in the limit of a large economy equals to

x∗
i (yi, p) =

E[θ|yi, p]− p

ρi Var[θ|yi, p]
= ρ−1

i τiyi −
(
ρ−1
i τi +

τθ
∆τu + ρ

)
p. (4)

The first equality is the standard mean-variance portfolio strategy in the CARA-normality

setting (see, e.g., Equations (6) and (11) in Grossman (1976)), and the second one follows from

(1) and the projection theorem for normal random variables.

Additional computations yield the ex-ante welfare, i.e., the ex ante expected utility, of agent

i at his or her equilibrium strategy x∗
i :

11

E[Ui(Wi(x
∗
i ))] = E[− exp (−ρix

∗
i (yi, p)(θ − p))] = −

(
Var(θ − p)(τθ +∆2τu + τi)

)− 1
2 . (5)

We next present an important result on the ex ante expected utility that can be achieved

when agents follow the SAEAOS. Note that, when agents within a subgroup adopt this proto-

col and information acquisition is exogenous, the market-clearing condition remains valid and

11See also the proof of Lemma 2 in Rahi and Zigrand (2018).
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equilibrium prices are thus not affected.12 Therefore, the expected utility under a regime where

agents adopt the SAEAOS and the original equilibrium strategies are computed based on the

same equilibrium price p given in (1).

Proposition 1. The (ex-ante) expected utility of the simple average x∗
N for agent i ∈ N ⊂ Sg

is given by 13

E[Ui(Wi(x
∗
N ))] = −

(
Var(θ − p)(τθ +∆2τu + τN )

)− 1
2 , (6)

where

τN =

(
2− 1

|N |

)∑
j∈N τj

|N |
.

Furthermore, E[Ui(x
∗
N )] is strictly increasing in |N | when agents in group Sg have the same

signal precision.14

Comparing (6) in Proposition 1 and (5), we see that adopting the SAEAOS x∗
N in a subgroup

N ⊂ Sg dominates individual strategies {x∗
i,g, i ∈ N ⊂ Sg} if and only if

τN > τi, i ∈ N ⊂ Sg.

It is interesting to note that this condition only depends on the structure of signal precisions,

but not on other model parameters.15 We can interpret τN as the threshold precision condition

12While the group size |N | has no effect on the equilibrium price in our economy, it has a large impact on the

equilibrium price and consequently on the equilibrium statistics (for instance, price volatility
√
Var(p), market

efficiency 1/Var[θ|p], return volatility
√

Var(θ − p), etc.) in the economies with direct information sharing (Han

and Yang 2013; Ozsoylev and Walden 2011).
13When agents in some group Sg have different risk aversion coefficients and signal precisions, the expected

utility of the simple average x∗
N for agent i ∈ N ⊂ Sg is given by the one in Proposition (1) by replacing τN

with

τ iN =
2

|N |
∑
j∈N

ρi
ρj

τj −
1

|N |2
∑
j∈N

ρ2i
ρ2j

τj −

1− 1

|N |
∑
j∈N

ρi
ρj

2

ρ2

τu + (∆τu+ρ)2

τθ

.

14Proposition 1 also holds for other concave utility functions provided that the equilibrium exists, but with a

potentially different threshold precision condition.
15As a byproduct, this property tells us that the welfare improvement result in Proposition 1 also holds for

an otherwise identical economy with small random endowment (Diamond and Verrecchia (1981)), please also

see Footnote 5 for more discussions.
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for agent i to be indifferent between his or her original strategy x∗
i,g and the simple average

x∗
N . Agent i has an incentive to follow the strategies of others when his or her own signal

precision is below the threshold, and does not otherwise. Clearly, this threshold condition is

satisfied when all agents have the same signal precision, and more generally when differences

between agents’ precision is small. Intuitively, when there are small differences between agents’

precision, the simple average can efficiently reduce the noise and uncertainty for all agents

making everyone better off. In contrast, if a given agent’s precision is considerably larger than

the average precision of a network, this agent does not have an incentive to join the network.

More specifically, for any given agent i ∈ N , being part and adopting the SAEAOS of the

subgroup N is worthwhile if and only if

τi <
2|N | − 1

|N | − 1
τ̄N\{i},

where τ̄N\{i} =
1

|N |−1

∑
j∈N\{i} τj is the average precision that the subgroup would have without

agent i. Note that 2|N |−1
|N |−1

is decreasing in |N |, takes the value 3 when |N | = 2, and converges

to 2 when |N | goes to infinity. Therefore, for any two agents it is worthwhile to form a network

unless the signal precision of one agent is more than three times larger than that of the other.

For a given agent to join and adopt the SAEAOS of an existing large network, his or her signal

precision must not be larger than twice the average precision of that group.

The second part of Proposition 1 states that, when agents in a group are homogenous in

terms of signal precision, then welfare is increasing in the size of social networks. In particular,

when information is exogenous and both risk-aversion and information precision homogenous

across social groups, everyone were to benefit when the entire social group would form a single

network adopting the SAEAOS. It is worth to note that this welfare improvement result in

our setting of adopting the SAEAOS does not depend on other model parameters (a relatively

homogenous distribution of risk-aversion coefficients and signal precisions suffices) and is quite

different from the welfare implication results in the setting of direct information sharing. For

example, Proposition 11 (c) in Ozsoylev and Walden (2011) shows that the monotonicity of

agents’ welfare over network connectedness (which plays a similar role as the group size in

the paper) highly depends on the model parameters, and generally is initially increasing and

eventually decreasing even if the coefficients of risk-aversion and signal precision are the same

across all agents.
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5 Endogenous Information

In this section, we consider the case where signal precisions are determined endogenously.

Agents face a cost c(τ) for acquiring information with precision τ and aim to optimally balance

informativeness of the signal and resulting cost. We will assume that the cost function c :

[0,∞) → [0,∞) is strictly convex, strictly increasing, continuously differentiable, and satisfies

the conditions limτ→0 c
′(τ) = 0 and limτ→∞ c′(τ) = ∞. Our goal is to explore whether agents

will adopt the SAEAOS when they jointly decide on information acquisition and on whether

to follow the actions of others.

Recall that from Assumption 1 agents of a given group are homogenous in terms of risk

aversion and that there is a finite number of coefficients of risk aversion in the economy, i.e.,

ρi ∈ {ρ⋄1, ..., ρ⋄m} for all i, for given m ∈ N and {ρ⋄1, ..., ρ⋄m} ∈ Rm
>0. For each group Sg with

coefficient of risk aversion ρ⋄k for some k ∈ {1, . . . ,m} we consider possible partitions of the

group in networks of size rk, where rk ∈ N is a divisor of the group size n.

We study endogenization of both information and formation of networks that adopt the

SAEAOS in two steps: First, we consider the case where only information acquisition is en-

dogenous and the network structure is exogenously given. This is the mirror situation of the

analysis in Section 4, where information acquisition was exogenous and we studied under the

formation of networks. In the second step, we study the case where both information acquisition

and formation of networks is endogenous.

Let div(n) ⊂ N denote the set of all divisors of n. An exogenously imposed network

structure can be described by a vector r = (r1, . . . , rm) ∈ div(n)m stipulating that groups with

risk aversion coefficient ρ⋄k fragment into n/rk networks containing rk agents each.
16 For a given

exogenous network structure r = (r1, . . . , rm) ∈ div(n)m, we denote by N (i, g) the network of

16We herein do not allow social groups to fragment into networks of different sizes. For example, a social

group of size 6 can fragment into six networks consisting of a single agent, three networks of size 2, two networks

of size 3, or a single network containing all agents of the group. But we do not allow the group to fragment

into, say, two networks of size 4 and 2. This assumption is primarily made to simplify notation. But it also

avoids conceptual definitions when introducing the notion of an equilibrium: What if, for example, in a network

consisting of three agents, any two of them would be better off when excluding the third, but the agent that

would eventually be excluded would prefer to remain the network consisting of all three agents.
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agent i ∈ {1, . . . , n} in group g.

Definition 2. An equilibrium with endogenous information but exogenously imposed network

structure r ∈ div(n)m is a tuple
((

τ ∗i,g
)
i=1,...,n;g=1,...,∞ , p

)
such that

(i) for each i = 1, . . . , n and g = 1, . . . ,∞, τ ∗i,g is the optimal precision given the precision of

other agents and resulting optimal ex ante strategies, i.e.,

τ ∗i,g ∈ argmax
τi,g>0

E
[
Ui

(
Wi,g(x

∗
N (i,g)(τi,g))− c(τi,g)

)]
,

where

x∗
N (i,g)(τi,g) =

1

|N (i, g)|

 ∑
j∈N (i,g)\{i}

x∗
j,g(τ

∗
j,g) + x∗

i,g(τi,g)

 ,

is the SAEAOS,

x∗
t,g(τ) =

E[θ|yt,g(τ), p]− p

ρ⋄k Var[θ|yt,g(τ), p]

is the optimal strategy of agent (t, g) with signal yt,g(τ), ρ
⋄
k is the risk aversion coefficient

of agents in group Sg, and p is the endogenous equilibrium price defined by (1) when ∆ is

replaced with
∑m

k=1 λk
τ∗i,k
ρ⋄k

, here τ ∗i,k is the optimal signal precision of agents in groups with

risk aversion coefficient ρ⋄k. The notation yt,g(τ) highlights that the precision of signal yt,g

is τ .

(ii) the market clears, i.e.,

lim
w→∞

1

w

w∑
g=1

(
1

n

n∑
i=1

x∗
i,g(yi,g, p)

)
= u.

Condition (i) of Definition 2 states that each agent’s precision is optimal given the precision

of other agents. An individual agent correctly anticipates that his/her chosen precision only

affects his/her own ex ante strategy, but not the ex ante strategies of others. When networks

are large, varying information precision therefore only has a small effect on the eventually

implemented strategy, which is the SAEAOS of all agents in the network. Condition (ii) of

Definition 2 is the usual market clearing conditions stating that, in equilibrium, supply must

equal demand. Note that this condition is again not affected by adopting the SAEAOS.
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The following proposition shows that an equilibrium with endogenous information but ex-

ogenous network structure exists, is unique, and leads to social groups that are homogenous

not only in terms of risk aversion but also information precision.

Proposition 2. For any exogenously given r ∈ div(n)m, there exists an equilibrium with en-

dogenous information but exogenously imposed network structure r,((
τ ∗i,g
)
i=1,...,n;g=1,...,∞ , p

)
. Moreover, the equilibrium is unique and satisfies τ ∗i,g = τ ∗j,g =: τ ∗k (r)

for any i, j when the coefficient of risk aversion in group Sg is ρ⋄k.

As an immediate corollary to Proposition 2, we obtain that the assumption of a finite

number of profiles of coefficients of risk aversion and signal precisions throughout the economy

we imposed in Assumption 1 when information is exogenous automatically holds also for the

endogenous case as long as the number of coefficients of risk aversion is finite.

The following proposition characterizes the unique equilibrium with endogenous information

but exogenously imposed network structure. We also show the resulting welfare of each agent.

Proposition 3. Let r ∈ div(n)m. The unique equilibrium with endogenous information but

exogenously imposed network structure r is characterized by (τ ∗k (r))k=1,...,m which are jointly

determined by the system of equations:

2ρ⋄kc
′(τ ∗k (r))

(
rk

2− 1
rk

(τθ +∆2
rτu) + rkτ

∗
k (r)

)
= 1, k = 1, ...,m, (7)

where ∆r =
∑m

k=1 λkτ
∗
k (r)/ρ

⋄
k and pr =

1
∆r+

τθ
∆rτu+ρ

(∆rθ− u). Moreover, the welfare (taking into

account the cost of information acquisition) obtained in a group with risk aversion ρ⋄k and being

split into networks composed of rk agents is given by

Vk(r) = −
(
exp (−2ρ⋄kc(τ

∗
k (r)))Var(θ − pr)(τθ +∆2

rτu + (2− 1/rk)τ
∗
k (r))

)− 1
2 .

Next, we introduce the following notion of a local equilibrium. These will play a role in the

definition of a fully endogenous equilibrium later on.

Definition 3. Let g ∈ N and N ⊂ Sg be a network. A local equilibrium of N given a network

and signal structure
(
r, (τk(r))k=1,...,m

)
and price p is a family (τ̂i,g)i∈N such that for any i ∈ N ,

17



Lou, Strub, and Wang: Following the actions of others

τ̂i,g is the optimal precision given the precision of other agents and resulting optimal ex ante

strategies, i.e.,

τ̂i,g ∈ argmax
τi,g>0

E [Ui (Wi,g(x
∗
N (τi,g))− c(τi,g))] ,

where

x∗
N (τi,g) =

1

|N |

 ∑
j∈N\{i}

x∗
j,g(τ̂j,g) + x∗

i,g(τi,g)


is the SAEAOS with

x∗
t,g(τ̂) =

E[θ|yt,g(τ̂), p]− p

ρ⋄k Var[θ|yt,g(τ̂), p]

being the optimal strategy of agent t, g with signal yt,g(τ) and ρ⋄k the risk aversion coefficient of

agents in group Sg.

A slight modification of Proposition 2 shows that local equilibria exist, are unique, and lead

to homogeneous information precision across a network.

Proposition 4. Let
(
r, (τk(r))k=1,...,m

)
be a given network and signal structure, p ∈ R, g ∈ N,

and N ⊂ Sg. Then there exists a local equilibrium of N given the network and signal structure(
r, (τk(r))k=1,...,m

)
and price p, say (τ̂j,g)j∈N . Moreover, this local equilibrium is unique and

satisfies τ̂i,g = τ̂j,g for any i, j ∈ N .

We will denote the unique and uniform local equilibrium of a network N ⊂ Sg for a given

network and signal structure
(
r, (τk(r))k=1,...,m

)
and price p by τ̂N . A fully endogenous equilib-

rium, where both information acquisition and network formation are determined endogenously,

is defined as follows.

Definition 4. A fully endogenous equilibrium is a tuple
(
r, (τ ∗k (r))k=1,...,m , p

)
such that

(i) setting τ ∗i,g = τ ∗k (r) for any i, g, where k is such that the coefficient of risk aversion coeffi-

cient in Sg is ρ⋄k,
((

τ ∗i,g
)
i=1,...,n;g=1,...,∞ , p

)
is an equilibrium with endogenous information

but exogenous network structure r, and
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(ii) for any group Sg, any possible network N ⊂ Sg and agent i ∈ N ,

E [Ui,g (Wi,g (x
∗
N (τ̂N ))− c (τ̂N ))] ≤ Vk(r),

where τ̂N is the local equilibrium of N given
(
r, (τ ∗k (r))k=1,...,m , p

)
, and x∗

N (τ̂N ) =∑
i∈N x∗

i,g(τ̂N )/|N |.

Definition 4 makes two requirements on fully endogenous equilibria. First, given the network

structure, each agent correctly anticipates the adaptation of the SAEAOS in his or her network

and optimally acquires information given this anticipation. Optimal information acquisition

will translate to corresponding demands and determine prices. Second, there is no potential

network that has an incentive to deviate from the network structure.

The following proposition identifies the network size of fully endogenous equilibria under

the assumption of a quadratic cost function. Together with Proposition 3, this will give a

fully characterization of equilibria with endogenous information acquisition and formation of

social networks. Let div(n) = {d1, . . . , d|div(n)|} denote the set of all divisors of n as before with

d1 = 1, di < di+1, and d|div(n)| = n.

Proposition 5. Suppose the cost function of information acquisition is of the form c(τ) =

ατ 2, where α > 0.17 Then there exists a fully endogenous equilibrium with network structure

r = (r1, . . . , rm) given according to the following case distinction:

(i) if d2 ∈ {2, 3}, i.e., group sizes are even or odd but divisible by three, then rk = d2 for

k = 1, . . . ,m;

(ii) if d2 /∈ {2, 3}, i.e., group sizes are neither divisible by two nor three, then rk ∈ {d1, d2} and

rk = rj for k, j = 1, . . . ,m.

Interestingly, the optimal network size emerging in a fully endogenous equilibrium is uniform

across social groups, rk = rℓ for all k, ℓ = 1, . . . ,m. In particular, network size in a fully

endogenous equilibrium does not depend on the risk-aversion prevalent in a given social group.

To abbreviate notation, we will denote the optimal information acquisition of an agent with

17The assumption of a quadratic cost function is common in the literature, see for example, Gao and Liang

(2013), He et al. (2021) and Goldstein and Yang (2017). In our case, when the cost function takes a more

general form of c(τ) = ατ ℓ, ℓ ≥ 2, we can similarly show that rk ≤ (ℓ+ 3)/2, i.e., both endogenous information

acquisition and network formation will lead to small social networks with size not greater than (ℓ+ 3)/2.
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risk aversion ρ⋄k in an economy with uniform network size di by τ ∗k (di), i.e., τ
∗
k (di) = τ ∗k (r) with

r = (di, . . . , di) for i = 1, . . . , |div(n)| and k = 1, . . . ,m. We further denote the risk adjusted

average signal precision in such an economy by ∆di =
∑m

k=1 λkτ
∗
k (di)/ρ

⋄
k and denote the welfare

Vk((di, . . . , di)) by Vk(di).

Our analysis shows that both cases can occur in case (ii) of Proposition 5 when the group

size is neither even nor divisible by three. When the factor α in the cost function c(τ) = ατ 2 is

either small or large, we can show that solitary action is optimal, i.e., rk = d1 = 1, if and only if

d2 /∈ {2, 3, 5}. Otherwise, the smallest possible network is optimal, i.e., rk = d2, k = 1, . . . ,m.

For example, if the group size is n = 5 × 7 = 35, then the network size in a fully endogenous

equilibrium is rk = d2 = 5. If the group size is n = 11 × 13 = 143, then the network size in a

fully endogenous equilibrium is rk = d1 = 1.18

Proposition 5 shows that fully endogenous equilibria typically lead to small social networks.

Forming a network with one or two other agents is superior to solitary action. Perhaps more

surprisingly, larger networks are not stable as agents have an incentive to disintegrate into

smaller ones. The intuition behind this is that agents generally reduce information acquisition

when joining larger networks as, one the one hand, they can free-ride on the information

captured in the ex ante strategies of other agents in the network, and, on the other hand,

their own ex ante optimal strategy receives a relatively small weight in the SAEAOS of a

large network. Although reducing information acquisition leads to a reduction in the cost

required to acquire information, when an increasing number of agents simultaneously attempts

to free-ride on other agents’ information, the benefit from cost saving is off-set by the loss

in information available across the network. Anticipating this, a large network thus has an

incentive to disintegrate into smaller networks where agents would then increase information

acquisition.

To summarize, large social networks are not stable when networks are formed endogenously

because each individual network has an incentive to disintegrate. We will next show that, when

the entire economy simultaneously could agree to adopting the SAEAOS within each social

group, then all agents in all networks were to benefit. Furthermore, information acquisition in

18If one were to allow social groups to fragment into networks of unequal as discussed in Footnote 16, then

networks would be of the size 2 with one agent remaining solitary if the group size is odd.
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such an economy would be reduced.

Proposition 6. (i) Imposing the SAEAOS for larger social networks across the entire economy

reduces information acquisition, i.e., ∆di+1
< ∆di for i = 1, . . . , |div(n)| − 1;

(ii) Suppose all agents in the economy have the same coefficient of risk aversion ρ and that

(τ ∗(n)/ρ)2τu ≥ τθ.
19 Then imposing the SAEAOS for larger social networks across the entire

economy increases welfare, i.e., V (di) < V (di+1) for i = 1, . . . , |div(n)| − 1.

Part (i) in Proposition 6 shows that adopting the SAEAOS will reduce agents’ incentive to

acquire information. This results from two separate mechanisms: Agents are tempted to free

ride on the strategies of other agents in their group and their own information translates to a

smaller effect in the SAEAOS than it would in their own, individual strategy. The first mech-

anism conforms with the finding that information sharing crowds out information production

(Halim et al. 2019; Han and Yang 2013) while the second is new to the best of our knowledge.

Part (ii) in Proposition 6 shows that all agents where to benefit when a protocol of adopting

the SAEAOS for larger social networks across the entire economy were imposed. However, as

noted above, each individual network would have an incentive to deviate from this protocol

and instead form smaller social networks. Therefore, the economy where all agents adopt the

SAEAOS is not stable.

The intuition behind this surprising result is as follows. In an economy where larger net-

works commit to the protocol of adopting the simple average agents reduce their information

acquisition. On the one hand, high level of information in the economy implies that prices are

precise in predicting the fundamental, and uncertainty about the final payoff is thus low. This

results in risk averse agents facing smaller trading risks and thus experiencing higher expected

utilities. But on the other hand, reduction in risk will also lead to lower expected returns

(Kurlat and Veldkamp (2015)), called return effect, a term coined by He et al. (2021). In sum-

19When all traders in the large economy are homogeneous in their risk aversion, we omit the subscript k

from all the notations. Note that here we can show by contradiction from (7) that τ∗(n) → 0 as τu → ∞ and

as a consequence, from (7) again we have (τ∗(n)/ρ)2τu → ∞ as τu → ∞. Similar to the case of exogenous

information, this result tells us that the welfare improvement result in Part (ii) of Proposition 6 for the case of

endogenous information also holds for an otherwise identical economy with small random endowment (Diamond

and Verrecchia (1981)), please also see Footnote 5 for more discussions.
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mary, the risky asset in an economy with high information acquisition contains less risk, but

also offers a lower expected return. But the second effect dominates the first one, and hence

all agents would benefit when larger networks commit to the protocol of adopting the simple

average. When agents reduce information acquisition when adopting the SAEAOS, they thus

directly benefit due to a reduction in costs and indirectly due to a more favorable risk-return

profile of the risky asset. It is worth noting that Proposition 3 in Lou and Yang (2022) provides

a precise albeit complicated necessary and sufficient condition on the monotonicity of agents’

welfare over network connectedness in the setting of information sharing. In contrast to Lou

and Yang (2022), Part (ii) in Proposition 6 provides a condition ensuring welfare improvement

that is easily verified.

As discussed, large social networks have an incentive to disintegrate when social networks

are formed endogenously. Large social networks adopting the SAEAOS would thus have to be

enforced by a social planner or central authority. In the reminder of this section, we investigate

the impact of imposing the SAEAOS for larger networks across the entire economy on impor-

tant market quality measures: Market efficiency is measured by 1/Var[θ|p] (Han and Yang

2013; Ozsoylev and Walden 2011) and refers to the degree with which market prices reflect

information on fundamentals. Market liquidity is measured by 1
∂p/∂u

. High market liquidity

implies that a shock in supply or noise trading is absorbed without moving the price much

(Han and Yang (2013)). Average trading volume is measured by limw→∞
1
nw

∑w
g=1

∑n
i=1 E|x∗

i,g|,

and return volatility by
√
Var(θ − p). We have the following result.

Proposition 7. Imposing the protocol of adopting the SAEAOS for larger networks within

each social group on the entire economy will

(i) reduce market efficiency;

(ii) increase return volatility;

(iii) reduce market liquidity if ∆n > (
√
τθτu − ρ)/τu, and increase market liquidity if ∆1 <

(
√
τθτu − ρ)/τu;

(iv) reduce average trading volume when all agents in the economy have the same risk aversion

coefficient.

We next compare these results with the findings of Han and Yang (2013), who study a

rational expectations equilibrium model where agents can share their signals with others in an
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exogenous social network. Han and Yang (2013) show that, when the information structure

is endogenous, increasing network connectedness incentivizes agents to reduce information ac-

quisition, harms market efficiency, reduces liquidity if the market is sufficiently informationally

efficient, decreases trading volume and increases agents’ welfare. The results in Propositions 6

and 7 are consistent with the findings in Han and Yang (2013). However, they are generated un-

der a different mechanism of social interaction. In Han and Yang (2013), social communication

refers to the case where informed agents voluntarily share a noisy version of their private signals

to all other agents within the same network, and network connectedness is defined as the size of

these networks. In our model, social interaction results in agents following the actions of others

by adopting the SAEAOS. That is, it is the action, not signal, that is shared between agents in

our model. Furthermore, while the results in Han and Yang (2013) and our paper for the case

of endogenous information are consistent, they differ for the case of exogenous information. For

example, Han and Yang (2013) numerically show that in the exogenous case increasing network

connectedness will reduce agents’ welfare. We make the opposite observation in our model as

adopting the SAEAOS leads to improvements in welfare and larger improvements when more

agents adopt SAEAOS when information is exogenous (Proposition 1). In this case, adopting

the SAEAOS keeps overall information and equilibrium prices unchanged, and benefit agents

by reducing the noise present in individuals’ demands.

6 Conclusions

We contribute to the emerging literature studying the implications of social communication

and learning for market outcomes in a rational expectations equilibrium economy. Different

from the popular approach of direct information sharing where agents may be worse off, we

herein consider the case where agents only observe the actions of the members of their social

network and learn from these through the simple, heuristic protocol of adopting the SAEAOS

of their social network.

Whether adopting the SAEAOS in a large social network benefits all members thereof cru-

cially depends on the homogeneity of information precision across the network when information

acquisition is exogenously fixed. If information precision is relatively homogenous across a social

23



Lou, Strub, and Wang: Following the actions of others

network, then all agents benefit from adopting the SAEAOS. In contrast, if there is considerable

heterogeneity between agents’ information precision, then those agents with higher precision

were better off when forming a network excluding those with low information precision or even

just following their own ex ante optimal strategies and ignoring the actions of others.

We find that social networks are always homogenous in terms of information precision when

information acquisition is endogenous under the assumption that social groups are homogenous

in terms of risk-aversion. More surprisingly, a setting where both information acquisition and

network formation is endogenous leads to small social networks in equilibrium. Both solitary

action and large social networks are not stable as agents have an incentive to form, respectively

disintegrate into, small social networks of two or three agents. Despite this, each agent would

benefit if larger networks were imposed on the entire economy by a central agent or social

planner. Our results indicate that the proposed protocol of SAEAOS can intrinsically improve

agents’ welfare. Imposing large networks on the networks would reduce information acquisition,

market efficiency, market liquidity, and trading volume, while increasing return volatility. These

affects on market quality measures coincide with the findings of Han and Yang (2013), where

agents share signals instead of actions.

There are several interesting directions for future research. In the model of this paper,

we assume that agents are homogenous in terms of risk-aversion within each social group. It

would be more realistic if we were to allow for some heterogeneity in risk-aversion within social

groups. Many of our results depend on this assumption of homogeneous risk aversion, and an

interesting open question is thus to study whether qualitatively similar results can be obtained

when relaxing this assumption.

Agents in our model learn from the actions of others in their social networks through

adaptation of the SAEAOS. While this is an intuitive, heuristic approach, it would be interesting

to explore other forms of learning from the actions of others. One could for example discriminate

between the actions of leaders and followers in social networks.

In our model, strategies of agents correspond to the amount invested in a single risky asset.

It would be interesting to consider an economy containing multiple risky assets and allow for a

more general interpretation of strategies as investment portfolios. When information acquisition

is costly, a setup with multiple risky assets typically leads to under-diversification in the optimal
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strategy of a single agent (van Nieuwerburgh and Veldkamp, 2010). Adopting the SAEAOS

could thus lead to additional benefits in terms of diversification, and it would be interesting to

explore the implications of this protocol on information acquisition, asset prices, and welfare.

A recent literature studies investment in social networks where agents’ preferences depend

on the outcomes of others (Genicot and Ray, 2017; Lou et al., 2021). In the model of this

paper, agents learn from members of their social networks by adapting the SAEAOS, but are

otherwise not influenced by the strategies or outcomes of others. It would be interesting to

study a model that combines the two features of social interaction: On the one hand, agents can

learn from the strategies of other members in their network; on the other hand, their preferences

are interested by the outcomes of others.
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Appendix A: The Implementation of SAEAOS

In this appendix, we provide a privacy preserving algorithm for agents N = {1, 2, ..., n} to

compute their SAEAOS.20 Suppose that agents’ linear strategies are given by x∗
i (yi, p) = aiyi−

20The idea of the designed algorithm has been used in the well-known algorithm on calculating the average

salary without disclosing the individual salary, for example, see http://findnerd.com/list/view/How-to-know-

the-average-without-disclosing-the-salaries/15268/ or https://www.geeksforgeeks.org/puzzle-26-know-average-

salary-without-disclosing-individual-salaries/ This method shares the same idea with secure computations of

Yao (1982).
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bip, where ai, bi are constants, i = 1, ..., n. Then the SAEAOS is accordingly given by

1

n

n∑
i=1

x∗
i (yi, p) =

1

n

n∑
i=1

aiyi −
1

n

n∑
i=1

bip,

which also specifies a demand for every price p.

Algorithm 1 Privacy Preserving Simple Averaging Algorithm

Initialization: the intercepts (a1y1, ..., anyn), and the coefficients (b1, ..., bn) of the linear

simply averaged strategy
∑

i x
∗
i (yi, ·)/n, n ≥ 3.

Algorithm:

Step 1 : For i = 1, ..., n, agent i first adds a random noise δi to aiyi and further adds the

noisy sum aiyi+ δi into the sum told by her predecessor. Agent i then tells the sum to agent

i+ 1 (here n+ 1 (mod n)=1); finally agent 1 receives a noisy sum:

n∑
i=1

(aiyi + δi);

Step 2 : For i = 1, ..., n− 1, agent i first subtracts his own random noise δi from the sum told

by her predecessor agent, then tells the sum to agent i+ 1 (here n+ 1 (mod n)=1); agent n

subtracts his own random noise δn from the sum told by agent n− 1 and gets an exact sum:

n∑
i=1

aiyi.

Finally, agent n tells the simple average (
∑n

i=1 aiyi)/n to all the other agents in the group.

Step 3 : Repeat the above two steps for (b1, ..., bn), agents get the simple average
∑n

i=1 bi/n.

Output: the simply averaged strategy

1

n

n∑
i=1

x∗
i (yi, ·)

of the original demand strategies (x∗
1(y1, ·), ..., x∗

n(yn, ·))

By construction, the Privacy Preserving Simple Averaging Algorithm 1 outputs the simple

average of agents’ strategies, while no agent knows the equilibrium strategies of other agents.

This protects the private information of each individual agent in the network.
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Note that in Algorithm 1, all agents truthfully report their intercept and linearity coefficient

disturbed by a random number which will be subtracted later so that the actual ones computed

in the final sum are exact to her successor agent. That is, agents in the algorithm are not

strategic. We next consider a strategic setting where agents tell a noisy version of their truthful

intercepts and linearity coefficients when computing the simple average in Algorithm 1. Instead

of truthful subtractions in Step 2 of Algorithm 1, we now suppose that agents are allowed to

be strategic in the sense that they do not subtract the added noise in Step 1, resulting in

the simple average being a noisy version of the true one. We use x̃∗
i to denote the strategy

contributed by agent i to the final simple average (i.e., the simple average is
∑n

i=1 x̃
∗
i /n), where

x̃∗
i = x∗

i if agent i is telling the truth, and x∗
i + δi if not (we still use the notation δi to denote

the noise for simplicity; δi denotes either the random noise used when computing the simple

average of intercepts or the random noise used when computing the simple average of linearity

coefficients). Note that when agent i is not telling the truth, although all the other agents

do not know that the strategy x∗
i appearing in the final simple average is biased while agent

i clearly knows this and then has an incentive to subtract the noise added by herself when

computing the simple average. Since agents within the same group have the same risk aversion

coefficient (Assumption 1), we ignore the subscript and write Ui as U for simplicity.

Proposition 8. The followings hold:

(i) For any i, and any given x̃∗
j , j ̸= i, it holds that

E
[
U
(
Wj

((∑
j ̸=i

x̃∗
j + x∗

i + δi

)
/n
))]

< E
[
U
(
Wj

((∑
j ̸=i

x̃∗
j + x∗

i

)
/n
))]

;

(ii) For any i, r, and any given x̃∗
j , j ∈ N \ {i, r}, it holds that

E
[
U
(
Wi

(( ∑
j∈N\{i,r}

x̃∗
j + x∗

r + δr + x∗
i

)
/n
))]

< E
[
U
(
Wi

(( ∑
j∈N\{i,r}

x̃∗
j + x∗

r + x∗
i

)
/n
))]

;

(iii) E[U(W ((
∑n

i=1 x̃
∗
i )/n))] ≤ E[U(W ((

∑n
i=1 x

∗
i )/n))], where the inequality is strict if x̃∗

i ̸= x∗
i

for some i.

Part (i) of Proposition 8 shows that for any given strategies of the other agents, compared

with the benchmark setting where each agent reports the truth, the non-truthful telling of one
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agent will always make all the other agents’ welfare worse off. At the same time, the welfare

of the agent not reporting truthfully cannot improve (note that the welfare of agent i is still

given by E[U(Wi((
∑

j ̸=i x̃
∗
j + x∗

i )/n))] even if she lies because agent i will subtract the noise

added by herself when computing the simple average). Part (ii) reveals that when one agent

lies, say agent i, and the other agent, say agent r, knows that agent i lies, then agent r can

punish agent i and make him worse off. Indeed, note again that when agent i is lying, her

welfare is given by E
[
U
(
Wi

((∑
j∈N\{i,r} x̃

∗
j + x∗

r + δr + x∗
i

)
/n
))]

if agent r also lies, and by

E
[
U
(
Wi

((∑
j∈N\{i,r} x̃

∗
j +x∗

r +x∗
i

)
/n
))]

if not because agent i will subtract the noise added by

herself when computing the simple average no matter whether agent r lies. Part (iii) tells us

a fact that all agents clearly know that when there are two agents who lie, all agents will be

worse off compared with the benchmark where all agents are telling the truth. Hence, the three

parts of Proposition 8 together indicate that it is incentive compatible in the sense that all

agents are willing to tell the truth and no incentive to lie when computing the simple average

of demand strategies.

Appendix B: Proofs of All Propositions

The following lemma is used to compute the expected utility of a quadratic function (see the

result on page 382 in Vives (2008) or Lemma A.1 in the Appendix in Maŕın and Rahi (1999)).

Lemma 1. Suppose that z is an n-dimensional normal random vector with mean 0 and positive

definite variance-covariance matrix Σ, B is a symmetric n × n matrix, b is a n-dimensional

vector, and c is a constant. If the matrix (Σ−1 − 2B) is positive definite, then

E[exp(z′Bz + b′z + c)] = (det(In − 2ΣB))−
1
2 exp

(1
2
b′(In − 2ΣB)−1Σb+ c

)
,

where In denotes the identity matrix in Rn and det(·) is the determinant operator.
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Proof of Proposition 1

Let ρ denote the common risk aversion coefficient of agents in Sg and consider agent i ∈ N .

The SAEAOS of all agents’ equilibrium strategies can be expressed as

x∗
N =

1

|N |
∑
j∈N

x∗
j,g = ρ−1

(
τ̄N θ + ξN −

(
τ̄N +

τθ
1 + ρ−1∆τu

)
p

)
,

where τ̄N =
∑

j∈N τj/|N |, ξN =
∑

j∈N τjϵj/|N |.

We intend to apply Lemma 1 for z = (θ− p, ξN , p)′. The variance-covariance matrix Σ and

B are given by

Σ =


ϕ 0 ς

0 Var(ξN ) 0

ς 0 ∆2/τθ+1/τu
(∆+β)2

 , B =


τ̄N

1
2

−ρβ
2

1
2

0 0

−ρβ
2

0 0

 ,

where

β =
τθ

∆τu + ρ
, ϕ =

β2/τθ + 1/τu
(∆ + β)2

, ς =
∆β/τθ − 1/τu

(∆ + β)2
.

In order to apply Lemma 1, we need that Σ−1 + 2B is positive definite. We first show the

following claim. Suppose z′Bz = ẑ′B̂ẑ, for some symmetric matrix B̂, where z, ẑ are two

normal random vectors. Let Γ be invertible such that ẑ = Γz holds and let Σ and Σ̂ denote

the respective positive definite variance-covariance matrices of z and ẑ, respectively. Clearly,

we have Σ̂ = ΓΣΓ′. We claim that Σ−1 + 2B is positive definite if and only if Σ̂−1 + 2B̂ is

positive definite. First, from ẑ′B̂ẑ = z′Γ′B̂Γz = z′Bz, we have B = Γ′B̂Γ. Then it follows that

Σ−1 + 2B = Γ′Σ̂−1Γ + 2Γ′B̂Γ = Γ′(Σ̂−1 + 2B̂)Γ, which implies the claim.

Observe that we can alternatively write ρx∗
Sg
(θ−p) as ẑ′B̂ẑ for some normal random vector

ẑ and symmetric matrix B̂. In fact, from the expressions p = (∆θ − u)/(∆ + β) (see Equation

(1)) and θ − p = (βθ + u)/(∆ + β), we have

ρx∗
Sg
(θ − p) =

(
τ̄N (θ − p) + ξN − ρβp

)
(θ − p)

=
1

∆ + β

(
τ̄N

βθ + u

∆+ β
+ ξN − ρβ

∆θ − u

∆+ β

)
(βθ + u)

=
1

∆ + β

((τ̄N − ρ∆)β

∆+ β
θ +

τ̄N + ρβ

∆+ β
u+ ξN

)
(βθ + u),
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which can be written as ẑ′B̂ẑ with ẑ = (θ, u, ξN ) and

B̂ =
1

∆+ β


(τ̄N−ρ∆)β2

∆+β
(τ̄N+ρ(β−∆)/2)β

∆+β
β
2

(τ̄N+ρ(β−∆)/2)β
∆+β

τ̄N+ρβ
∆+β

1
2

β
2

1
2

0

 .

Let Σ̂ denote the variance-covariance matrix of random vector ẑ. Some simple calculations give

Σ̂−1 + 2B̂ =


τθ +

2(τ̄N−ρ∆)β2

(∆+β)2
(2τ̄N+ρ(β−∆))β

(∆+β)2
β

∆+β

(2τ̄N+ρ(β−∆))β
(∆+β)2

τu +
2(τ̄N+ρβ)
(∆+β)2

1
∆+β

β
∆+β

1
∆+β

1
τ̄N

 .

By some simple but tedious derivations, we can show that Σ̂−1 + 2B̂ is positive definite. We

omit the details here.

From the expressions p = (∆θ − u)/(∆ + β) and θ − p = (βθ + u)/(∆ + β) again, we see

that

(θ − p, ξN , p)′ =


β

∆+β
1

∆+β
0

0 0 1

∆
∆+β

− 1
∆+β

0

 (θ, u, ξN )′

is an invertible transformation, by the above claim, we know that matrix Σ−1 + 2B is positive

definite.

Using Lemma 1 with z = (θ− p, ξN , p)′, the matrices Σ, B, and setting b = 0 and c = 0, we

obtain

E [− exp(−ρx∗
N (θ − p))] = −(det(I3 + 2ΣB))−

1
2 = −(det(I3 + 2BΣ))−

1
2 ,

where

I3 + 2BΣ =


1 + 2ω Var(ξN ) 2γ

ϕ 1 ς

−ρβϕ 0 1− ρβς


with

ω = τ̄Nϕ− ρβς

2
, γ = τ̄N ς − ρβ

2

∆2/τθ + 1/τu
(∆ + β)2

.
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Expanding the determinant det(I3 + 2BΣ) along the first row yields

det(I3 + 2BΣ) = (1 + 2τ̄Nϕ− ρβς)(1− ρβς)− Var(ξN )ϕ+ 2γρβϕ

= (1− ρβς)2 − (ρβ)2ϕ
∆2/τθ + 1/τu
(∆ + β)2

+ 2τ̄Nϕ(1− ρβς)− Var(ξN )ϕ+ 2τ̄N ςρβϕ

= (1− ρβς)2 − (ρβ)2ϕ
∆2/τθ + 1/τu
(∆ + β)2

+ (2τ̄N − Var(ξN ))ϕ.

Similarly, we can show that the expected utility at x∗
i,g is given by

E
[
− exp

(
−ρx∗

i,g(θ − p)
) ]

= (1− ρβς)2 − (ρβ)2ϕ
∆2/τθ + 1/τu
(∆ + β)2

+ (2τi − Var(τiϵi))ϕ.

Therefore, each agent’s welfare by adopting the simple average will be the same as that by

taking the original equilibrium strategy if 2τi − Var(τiϵi) = 2τ̄N − Var(ξN ), or equivalently,

τi = 2
∑

j∈N τj/|N | −
∑

j∈N τj/|N |2. The first conclusion then follows from the alternative

expression (5) of the expected utility at x∗
i,g.

When agents in group Sg have the same signal precision τ , τN = (2 − 1/|N |)τ is strictly

increasing in |N |, and hence E[Ui(x
∗
N )] is strictly increasing in |N |. □

Proof of Proposition 2

It follows from (6) that

E
[
Ui

(
Wi,g(x

∗
N (i,g)(τi,g))− c(τi,g)

)]
= − exp (ρ⋄kc(τi,g))

(
Var(θ − pr)

(
τθ +∆2

rτu +

(
2− 1

rk

)∑
j∈N (i,g)\{i} τ

∗
j,g + τi,g

rk

))− 1
2

= −

(
Var(θ − pr) exp (−2ρ⋄kc(τi,g))

(
τθ +∆2

rτu +

(
2− 1

rk

)∑
j∈N (i,g)\{i} τ

∗
j,g + τi,g

rk

))− 1
2

.

(8)

By taking derivative with respect to τ ∗i,g for both sides of (8), we see that τ ∗i,g is determined by

c′(τ ∗i,g) =

2
rk

− 1
r2k

2ρ⋄k

(
τθ +∆2

rτu + (2− 1/rk)
∑

j∈N (i,g)\{i} τ∗j,g+τ∗i,g
rk

) , (9)
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from which we conclude that τ ∗i,g = τ ∗j,g, denoted as τ ∗k (r), for any i, j ∈ Sg. It then follows from

(9) that {τ ∗k (r)}mk=1 satisfies

c′(τ ∗k (r)) =

2
rk

− 1
r2k

2ρ⋄k (τθ +∆2
rτu + (2− 1/rk)τ ∗k (r))

=
1

2ρ⋄k

(
rk

2− 1
rk

(τθ +∆2
rτu) + rkτ ∗k (r)

) , k = 1, ...,m. (10)

We next show existence of an equilibrium by showing that the system of equations (10) has

a solution. Recall that for each k ∈ {1, ...,m}, λk denotes the non-negative fraction of groups

with risk aversion coefficient ρ⋄k in the limit economy. Observing (10), we define the mapping

f = (f1, f2, ..., fm), fk : (0,∞)m → (0,∞) as follows:

fk(τ) = (c′)−1

 1

2ρ⋄k

(
rk

2− 1
rk

(τθ + (∆(τ ))2τu) + rkτk

)
 ,

where τ = (τ1, ..., τm), ∆(τ ) =
∑m

k=1 λkτk/ρ
⋄
k. Let dmax = 1/

(
2τθ min1≤k≤m

ρ⋄krk
2− 1

rk

)
and

dmin =
1

2

(
max
1≤k≤m

(
ρ⋄k

rk
2− 1

rk

)τθ +

(
(c′)−1(dmax)

m∑
k=1

λk

ρ⋄k

)2

τu

+ max
1≤k≤m

(ρ⋄krk)(c
′)−1(dmax)

)−1

.

We then can see that

(c′)−1(dmin) ≤ fk(τ) ≤ (c′)−1(dmax)

for any τ ∈ (0,∞)m with |τk| ≤ (c′)−1(dmax), k = 1, ...,m. Hence, the mapping f maps

the convex, compact set [(c′)−1(dmin), (c
′)−1(dmax)]

m into itself. Note that the two numbers

of (c′)−1(dmin) and (c′)−1(dmax) are well-defined due to the conditions limτ→0 c
′(τ) = 0 and

limτ→∞ c′(τ) = ∞. In addition, the mapping f is also continuous over (0,∞)m. Hence applying

Brouwer’s Fixed Point Theorem to the mapping f(·) will lead to a fixed point, or the solution

to (10).

Finally, we show uniqueness. Suppose that both {τ ∗k (r)}mk=1 and {τ̂ ∗k (r)}mk=1 are solutions

to (10). Then we first claim that ∆̂r :=
∑m

k=1 λkτ̂
∗
k (r)/ρ

⋄
k = ∆r. Otherwise, if ∆̂r > ∆r, then

τ̂ ∗k (r) < τ ∗k (r) for every k = 1, ...,m from (10), and consequently, ∆̂r < ∆r, a contradiction.

A similar contradiction also arises if ∆̂r < ∆r. Hence the claim ∆̂r = ∆r follows and then

{τ ∗k (r)}mk=1 is uniquely determined by (10). The proof is completed. □
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Proof of Proposition 3

Follows directly from (8) and (10). □

Proof of Proposition 4

Follows directly from the arguments in the proof of Proposition 2. □

Proof of Proposition 5

Consider any possible network N ⊂ Sg with risk aversion coefficient ρ⋄k, and denote Ks =

E [Ui,g (Wi,g (x
∗
N (τ ∗N ))− c (τ ∗N ))] , where s = |N |. Due to the assumption of a quadratic cost

function, we have similar to (8) and (9) that

Ks = −
(
Var(θ − pr) exp (−2ρ⋄kc(τ

∗
N (s)))

(
τθ +∆2

rτu +

(
2− 1

s

)
τ ∗N (s)

))− 1
2

,

where τ ∗N (s) satisfies

4αρ⋄kτ
∗
N (s)

(
τθ +∆2

rτu +

(
2− 1

s

)
τ ∗N (s)

)
=

2

s
− 1

s2
. (11)

To show the conclusion, it suffices to show that Kdj > Kdj+1
for j = 2, . . . , |div(n)| − 1, that

K̄2 > K̄3 > K̄1, and that the order of the Kj’s does not depend on ρ⋄k. For the first statement,

by letting s be a fictitious, continuous variable taking values in [1, n], it suffices to show that

Ks, or equivalently,

K̄s = exp (−2ρ⋄kc(τ
∗
N (s)))

(
τθ +∆2

rτu +

(
2− 1

s

)
τ ∗N (s)

)
is strictly decreasing in s ∈ [3, n].

We first show that K̄s is strictly decreasing in s ∈ [3, n]. Taking derivative with respect to

s on both sides of (11), we have

4αρ⋄k

(
∂τ ∗N (s)

∂s

(
τθ +∆2

rτu +

(
2− 1

s

)
τ ∗N (s)

)
+ τ ∗N (s)

(
τ ∗N (s)

s2
+

(
2− 1

s

)
∂τ ∗N (s)

∂s

))

= − 2

s2

(
1− 1

s

)
.
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Consequently,

∂τ ∗N (s)

∂s
=

− 2
s2
(1− 1

s)
4αρ⋄k

− (τ∗N (s))2

s2

τθ +∆2
rτu + 2

(
2− 1

s

)
τ ∗N (s)

. (12)

Moreover, we have

∂K̄s

∂s
∝ −4αρ⋄kτ

∗
N (s)

∂τ ∗N (s)

∂s

(
τθ +∆2

rτu +

(
2− 1

s

)
τ ∗N (s)

)
+

τ ∗N (s)

s2
+

(
2− 1

s

)
∂τ ∗N (s)

∂s

=
τ ∗N (s)

s2
+

(
2− 1

s

)(
1− 1

s

)
∂τ ∗N (s)

∂s

=
τ ∗N (s)

s2
+

(
2− 1

s

)(
1− 1

s

) − 2
s2
(1− 1

s
)− 4αρ⋄k

(τ∗N (s))2

s2

4αρ⋄k(τθ +∆2
rτu + 2(2− 1/s)τ ∗N (s))

∝
1
s2
(2
s
− 1

s2
)

τθ +∆2
rτu + (2− 1/s)τ ∗N (s)

+

(
2− 1

s

)(
1− 1

s

) − 2
s2
(1− 1

s
)− 4αρ⋄k

(τ∗N (s))2

s2

τθ +∆2
rτu + 2(2− 1/s)τ ∗N (s)

<
1
s2
(2
s
− 1

s2
)

τθ +∆2
rτu + (2− 1/s)τ ∗N (s)

−
(2− 1

s
)(1− 1

s
) 2
s2
(1− 1

s
)

τθ +∆2
rτu + 2(2− 1/s)τ ∗N (s)

∝ (τθ +∆2
rτu + 2(2− 1/s)τ ∗N (s))/s− 2(1− 1/s)2(τθ +∆2

rτu + (2− 1/s)τ ∗N (s)), (13)

where the first equality and the second ∝ follow from (11), and the second equality from (12).

We see that the term in (13) is negative if (1− 1/s)2 > 1/s, which is true when s ≥ 3. Hence

K̄s is strictly decreasing in s for s ≥ 3.

We next show that K̄2 > K̄3 > K̄1. Let K̂s = log(K̄s), s = 1, 2, 3. We have

K̂s = log (τ̄θ + τ̄ ∗N (s))− 2ρ⋄kα(τ
∗
N (s))2,

where τ̄θ = τθ +∆2
rτu, τ̄

∗
N (s) = (2− 1/s)τ ∗N (s). From (11), we have

4ρ⋄kατ̄
∗
N (s)(τ̄θ + τ̄ ∗N (s)) =

1

s

(
2− 1

s

)2

,

so that

τ̄ ∗N (s) =
1

2

−τ̄θ +

√
(τ̄θ)2 +

1
s
(2− 1

s
)2

ρ⋄kα

 .

Hence,

K̂s = log (τ̄θ + τ̄ ∗N (s))− 2ρ⋄kα(τ
∗
N (s))2

= log (τ̄θ + τ̄ ∗N (s))− 2ρ⋄kα

(2− 1/s)2
(τ̄ ∗N (s))2
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= log

 τ̄θ +

√
(τ̄θ)2 +

1
s(2−

1
s)

2

ρ⋄kα

2

− 2ρ⋄kα

(2− 1/s)2

2(τ̄θ)
2 +

1
s(2−

1
s)

2

ρ⋄kα
− 2τ̄θ

√
(τ̄θ)2 +

1
s(2−

1
s)

2

ρ⋄kα

4

= log

1 +

√
1 +

1
s

(
2− 1

s

)2
ρ⋄kα(τ̄θ)

2

− log (2/τ̄θ)

− 1

2(2− 1/s)2

2ρ⋄kα(τ̄θ)
2 +

1

s

(
2− 1

s

)2

− 2

√
(ρ⋄kα(τ̄θ)

2)2 +
1

s

(
2− 1

s

)2

ρ⋄kα(τ̄θ)
2


=: h(s, a)− log(2/τ̄θ),

where

h(s, a) = log

1 +

√
1 +

1

s

(2− 1
s
)2

a

−
2 + 1

s

(2− 1
s
)2

a
− 2

√
1 + 1

s

(2− 1
s
)2

a

2 (2−1/s)2

a

with a = ρ⋄kα(τ̄θ)
2. As a result,

h(2, a)−h(3, a) = log

 1 +
√

1 + 9
8a

1 +
√

1 + 25
27a

−

(
1

12
+

(
4

9
− 9

25

)
a− 4a

9

√
1 +

9

8a
+

9a

25

√
1 +

25

27a

)
,

and

h(3, a)− h(1, a) = log

1 +
√

1 + 25
27a

1 +
√

1 + 1
a

−

(
−1

3
+

(
9

25
− 1

)
a− 9a

25

√
1 +

25

27a
+ a

√
1 +

1

a

)
.

We first show that h(3, a) > h(1, a) for any a > 0 and thus K̄3 > K̄1. We have

d(h(3, a)− h(1, a))

da

= −
1
2

25
27a2√
1+ 25

27a

1 +
√

1 + 25
27a

+

1
2

1
a2√
1+ 1

a

1 +
√

1 + 1
a

+
16

25
+

9

25

1

2

2a+ 25
27√

a2 + 25
27
a
− 1

2

2a+ 1√
a2 + a

∝ 9

25

2a+ 25
27√

a2 + 25
27
a
− 25

27

1

a2 + 25
27
a+ a

√
a2 + 25

27
a
+

1

a2 + a+ a
√
a2 + a

− 2a+ 1√
a2 + a

+
32

25

=

9
25
(2a+ 25

27
)
(
a+

√
a2 + 25

27
a
)
− 25

27

a2 + 25
27
a+ a

√
a2 + 25

27
a

+
1− (2a+ 1)(a+

√
a2 + a)

a2 + a+ a
√
a2 + a

+
32

25

35



Lou, Strub, and Wang: Following the actions of others

∝ 9

25

(
2a+

25

27

)(
a+

√
a2 +

25

27
a

)
(
√
a2 + a+ a+ 1)

− (2a+ 1)
(
a+

√
a2 + a

)(√
a2 +

25

27
a+ a+

25

27

)
− 25

27

(√
a2 + a+ a

)
+

(√
a2 +

25

27
a+ a

)
+

32

25

√
a2 + a

(
a+

√
a2 + a

)(√
a2 +

25

27
a+ a+

25

27

)
.

Then

d(h(3, a)− h(1, a))

da

∝ 9

25

(
2a+

25

27

)(
a+

√
a2 +

25

27
a

)
(
√
a2 + a+ a+ 1)

− (2a+ 1)
(
a+

√
a2 + a

)(√
a2 +

25

27
a+ a

)
− 50

27
(a+ 1)

(√
a2 + a+ a

)
+

√
a2 +

25

27
a+ a+

32

25

(
a

√
a2 +

25

27
a+ a

(
a+

25

27

))(√
a2 + a+ a+ 1

)
= (

√
a2 + a+ a)

(
−2

3

√
a2 +

25

27
a− 4

3
a− 50

27

)
+

(
2a+

4

3

)√
a2 +

25

27
a+ 2a2 +

68

27
a

=
2

3

(
2(a+ 1)

√
a2 +

25

27
a+ a2 + a−

√
a2 + a

(
2a+

25

9
+

√
a2 +

25

27
a

))
and therefore

d(h(3, a)− h(1, a))

da
∝ 2

√
a+ 1

√
a+

25

27
+
√
a2 + a−

(
2a+

25

9
+

√
a2 +

25

27
a

)

∝ 4(a+ 1)

(
a+

25

27

)
+ a2 + a+ 4(a+ 1)

√
a2 +

25

27
a

−

(
4a2 +

625

81
+

100

9
a+ a2 +

25

27
a+

(
4a+

50

9

)√
a2 +

25

27
a

)
< 0.

Moreover,

lim
a→∞

(h(3, a)− h(1, a)) =
1

3
+ lim

a→∞

(
a

(
1−

√
1 +

1

a

)
− 9a

25

(
1−

√
1 +

25

27a

))

=
1

3
+ lim

z→0

1−
√
1 + z

z
− 9

25

1−
√

1 + 25z
27

z


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=
1

3
− 1

2
+

1

6
= 0,

and

lim
a→0

(h(3, a)− h(1, a)) =

√
25

27
+

1

3
> 0.

Hence h(3, a) > h(1, a) for any a > 0. Consequently, K̄3 > K̄1.

Finally, we show that h(2, a) > h(3, a) for any a > 0 and thus K̄2 > K̄3. We have

d(h(2, a)− h(3, a))

da

= −
1
2

9
8a2√
1+ 9

8a

1 +
√

1 + 9
8a

+

1
2

25
27a2√
1+ 25

27a

1 +
√

1 + 25
27a

− 19

225
+

4

9

1

2

2a+ 9
8√

a2 + 9
8
a
− 9

25

1

2

2a+ 25
27√

a2 + 25
27
a

∝ 4

9

2a+ 9
8√

a2 + 9
8
a
− 9

8

1

a2 + 9
8
a+ a

√
a2 + 9

8
a
+

25

27

1

a2 + 25
27
a+ a

√
a2 + 25

27
a
− 9

25

2a+ 25
27√

a2 + 25
27
a
− 38

225
.

Therefore,

d(h(2, a)− h(3, a))

da

∝
4
9
(2a+ 9

8
)
(
a+

√
a2 + 9

8
a
)
− 9

8

a2 + 9
8
a+ a

√
a2 + 9

8
a

+

25
27

− 9
25
(2a+ 25

27
)
(
a+

√
a2 + 25

27
a
)

a2 + 25
27
a+ a

√
a2 + 25

27
a

− 38

225

∝ 4

9

(
2a+

9

8

)(
a+

√
a2 +

9

8
a

)(√
a2 +

25

27
a+ a+

25

27

)

− 9

25

(
2a+

25

27

)(
a+

√
a2 +

25

27
a

)(√
a2 +

9

8
a+ a+

9

8

)

− 9

8

(√
a2 +

25

27
a+ a+

25

27

)
+

25

27

(√
a2 +

9

8
a+ a+

9

8

)

− 38

225

√
a2 +

25

27
a

(
a+

√
a2 +

25

27
a

)(√
a2 +

9

8
a+ a+

9

8

)

∝ 4

9

(
2a+

9

8

)(
a+

√
a2 +

9

8
a

)(√
a2 +

25

27
a+ a+

25

27

)

− 9

25

(
2a+

25

27

)(
a+

√
a2 +

25

27
a

)(√
a2 +

9

8
a+ a+

9

8

)

− 9

8

(√
a2 +

25

27
a+ a

)
+

25

27

(√
a2 +

9

8
a+ a

)
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− 38

225

√
a2 +

25

27
a

(
a+

√
a2 +

25

27
a

)(√
a2 +

9

8
a+ a+

9

8

)

∝ 4

9

(
2a+

9

8

)(
a+

√
a2 +

9

8
a

)(√
a2 +

25

27
a+ a+

25

27

)

− 9

25

(
2a+

25

27

)(
a+

√
a2 +

25

27
a

)(√
a2 +

9

8
a+ a

)

− 9

8

(
18

25
a+

4

3

)(√
a2 +

25

27
a+ a

)
+

25

27

(√
a2 +

9

8
a+ a

)

− 38

225

(√
a2 +

25

27
a+ a+

25

27

)(
a

√
a2 +

9

8
a+ a2 +

9

8
a

)
.

Then

d(h(2, a)− h(3, a))

da

∝

(√
a2 +

25

27
a+ a

)(
1

6

√
a2 +

9

8
a− 5

6
a− 3

2

)
+

25

27

(
162

225
a+

3

2

)√
a2 +

9

8
a+

25

27

(
162

225
a2 +

131

100
a

)

=

(√
a2 +

25

27
a+ a

)(
1

6

√
a2 +

9

8
a− 5

6
a− 3

2

)
+

25

27

(
18

25
a+

3

2

)√
a2 +

9

8
a+

25

27

(
18

25
a2 +

131

100
a

)

=

√
a2 +

25

27
a

(
1

6

√
a2 +

9

8
a− 5

6
a− 3

2

)
+

(
5

6
a+

25

18

)√
a2 +

9

8
a− 1

6
a2 − 31

108
a

=

(
1

6

√
a2 +

25

27
a+

5

6
a+

25

18

)√
a2 +

9

8
a−

((
5

6
a+

3

2

)√
a2 +

25

27
a+

1

6
a2 +

31

108
a

)

∝

(√
a2 +

25

27
a+ 5a+

25

3

)√
a2 +

9

8
a−

(
(5a+ 9)

√
a2 +

25

27
a+ a2 +

31

18
a

)

∝

(√
a2 +

25

27
a+ 5a+

25

3

)2(
a2 +

9

8
a

)
−

(
(5a+ 9)

√
a2 +

25

27
a+ a2 +

31

18
a

)2

=

(
a2 +

9

8
a

)(
a2 +

25

27
a+ 25

(
a2 +

25

9
+

10

3
a

)
+ 10

(
a+

5

3

)√
a2 +

25

27
a

)

− (25a2 + 81 + 90a)

(
a2 +

25

27
a

)
− a2

(
a2 +

312

182
+

31

9
a

)
− (10a+ 18)

(
a2 +

31

18
a

)√
a2 +

25

27
a.

Hence,

d(h(2, a)− h(3, a))

da
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∝
((

335

12
− 317

9

)
a2 +

(
225

12
− 31

)
a

)√
a2 +

25

27
a+ µ3a

3 + µ2a
2 + µ1a

∝
((

335

12
− 317

9

)
a+

225

12
− 31

)√
a2 +

25

27
a+ µ3a

2 + µ2a+ µ1

= −(7.3056a+ 12.25)

√
a2 +

25

27
a+ µ3a

2 + µ2a+ µ1

=: w(a),

where

µ3 =
91× 25

27
+

9× 13

4
− 90− 625

27
− 31

9
≈ −3.0833 < 0,

µ2 =
625

9
+

91× 25

24
− 81− 25× 90

27
− 312

182
≈ −3.0633 < 0,

µ1 =
625

8
− 25× 81

27
≈ 3.1250 > 0.

It is clear that lima→0w(a) = µ1 > 0, lima→∞w(a) = −∞, and w(·) is strictly decreasing in a.

Hence we can conclude that h(2, a)−h(3, a) first increases and eventually decreases in a. Since

we also have that lima→0 h(2, a)−h(3, a) = log
(

9
5

√
3
8

)
− 1

12
> 0, and lima→∞ h(2, a)−h(3, a) = 0,

we have that h(2, a)− h(3, a) > 0 for any a > 0. This implies that K̄2 > K̄3.

Finally, it is clear from the above arguments that the order of the Kj’s does not depend on

ρ⋄k. □

Proof of Proposition 6

We first show part (i). Assume by contradiction that ∆di+1
≥ ∆di . From (7) we see that

τ ∗k (di+1) < τ ∗k (di) for every k = 1, ...,m, and consequently ∆di+1
< ∆di , a contradiction. Hence,

∆di+1
< ∆di .

We now show part (ii). Since all agents in the economy have the same risk aversion coefficient

ρ, we see that τ = ρ∆. From Proposition 3,

V (di) = −
(
exp{−2ρc(ρ∆di)}Var(θ − pdi)(τθ +∆2

di
τu + (2− 1/di)ρ∆di)

)− 1
2 ,

where ∆di =
∑m

k=1 λkτ
∗
k (di)/ρ

⋄
k, pdi is given by (1) with the replacement of ∆ with ∆di . Note

that from (7) we have ∆di+1
< ∆di , so in order to show V (di) < V (di+1), it suffices to show
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that for any given 1 ≤ s ≤ n, Var(θ − p)(τθ +∆2τu + (2− 1/s)ρ∆) is strictly decreasing in ∆

since if it is, then

V (di+1) = −
(
exp{−2ρc(ρ∆di+1

)}Var(θ − pdi+1
)
(
τθ +∆2

di+1
τu + (2− 1/di+1)ρ∆di+1

))− 1
2

> −
(
exp{−2ρc(ρ∆di)}Var(θ − pdi)

(
τθ +∆2

di
τu + (2− 1/di+1)ρ∆di

))− 1
2

> −
(
exp{−2ρc(ρ∆di)}Var(θ − pdi)

(
τθ +∆2

di
τu + (2− 1/di)ρ∆di

))− 1
2

= V (di).

We next show the strict monotonicity. Recall β = τθ
∆τu+ρ

, so that ∂β
∂∆

= − τθτu
(∆τu+ρ)2

and

Var(θ − p) =
β2

τθ
+ 1

τu

(∆+β)2
. Then we have

∂

∂∆

(
Var(θ − p)(τθ +∆2τu + (2− 1/s)ρ∆

)
=

∂ Var(θ − p)

∂∆

(
τθ +∆2τu + (2− 1/s)ρ∆

)
+Var(θ − p) (2∆τu + (2− 1/s)ρ)

= − 2

(∆ + β)3

(
∆

∆τu + ρ

τθτu
(∆τu + ρ)2

+
1

τu

)(
τθ +∆2τu + (2− 1/s)ρ∆

)
+

1

(∆ + β)2

(
τθ

(∆τu + ρ)2
+

1

τu

)
(2∆τu + (2− 1/s)ρ)

∝ τθ
(∆τu + ρ)2

(
2∆τu + (2− 1/s)ρ− 2∆τu (τθ +∆2τu + (2− 1/s)ρ∆)

(∆τu + ρ)(∆ + β)

)
+

1

τu

(
2∆τu + (2− 1/s)ρ− 2(τθ +∆2τu + (2− 1/s)ρ∆)

∆ + β

)
=

τθ
(∆τu + ρ)2

(2∆τu + (2− 1/s)ρ)(∆2τu +∆ρ+ τθ)− 2∆τu (τθ +∆2τu + (2− 1/s)ρ∆)

∆2τu +∆ρ+ τθ

+
1

τu

(2∆τu + (2− 1/s)ρ)(∆2τu +∆ρ+ τθ)− 2(τθ +∆2τu + (2− 1/s)ρ∆)(∆τu + ρ)

∆2τu +∆ρ+ τθ

=
τθ

(∆τu + ρ)2
2∆2τuρ+ (2− 1/s)(∆ρ2 + τθρ−∆2ρτu)

∆2τu +∆ρ+ τθ

+
1

τu

−2τθρ+ (2− 1/s)(ρτθ −∆ρ2 −∆2τuρ)

∆2τu +∆ρ+ τθ

∝ τuτθ[2∆
2τuρ+ (2− 1/s)(∆ρ2 + τθρ−∆2ρτu)]

+ (∆2τ 2u + ρ2 + 2∆τuρ)[−2τθρ+ (2− 1/s)(ρτθ −∆ρ2 −∆2τuρ)],

which is less than

(∆2τ 2u + ρ2 + 2∆τuρ)(2− 1/s)(−∆ρ2 −∆2τuρ) + τuτθ(2− 1/s)(∆ρ2 + τθρ),
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which is negative under the condition ∆2τu ≥ τθ. The conclusion follows from the fact that

∆2
di
τu ≥ τθ holds for any i since we assume that ∆2

nτu ≥ τθ in this proposition and have shown

that ∆di+1
< ∆di for any i = 1, . . . , |div(n)| − 1. □

Proof of Proposition 7

Market Efficiency. From (1) we have 1/Var[θ|p] = τθ +∆2τu, so that imposing the protocol

of adopting the SAEAOS for larger networks within each social group on the entire economy

reduces market efficiency.

Return volatility. Recall that Var(θ − p) =
(

β2

τθ
+ 1

τu

)
/ (∆ + β)2, where β = τθ

∆τu+ρ
.

Direct computations lead to

∂ Var(θ − p)

∂∆
=

2β
τθ

∂β
∂∆

(∆ + β)2 − 2(β
2

τθ
+ 1

τu
)(∆ + β)(1 + ∂β

∂∆
)

(∆ + β)4

=
2

(∆ + β)3

(
β

τθ

∂β

∂∆
(∆ + β)−

(
β2

τθ
+

1

τu

)(
1 +

∂β

∂∆

))
=

2

(∆ + β)3

(
β

τθ

∂β

∂∆
∆− β2

τθ
− 1

τu
− 1

τu

∂β

∂∆

)
=

2

(∆ + β)3

((
∆

∆τu + ρ
− 1

τu

)
∂β

∂∆
− 1

τu
− τθ

(∆τu + ρ)2

)
= − 2

(∆ + β)3

(
∆

∆τu + ρ

τθτu
(∆τu + ρ)2

+
1

τu

)
< 0,

where we use the relation ∂β
∂∆

= − τθτu
(∆τu+ρ)2

. Hence the conclusion (ii) follows.

Market Liquidity. We have 1
∂p/∂u

= ∆+ τθ
∆τu+ρ

and

∂
(
∆+ τθ

∆τu+ρ

)
∂∆

= 1− τθτu
(∆τu + ρ)2

,

which is positive if and only if ∆ > (
√
τθτu− ρ)/τu. Note that we have shown that ∆di+1

< ∆di

for i = 1, . . . , |div(n)| − 1 in Proposition 6. Hence the conclusion (iii) follows.

Trading Volume. From (4) and the formula that E|z| = σ
√

2/π if z ∼ N(0, σ2), for i ∈ Sg

(with the parameter (ρ⋄k, τ
⋄
k )) we have

E|x∗
i,g| =

√
2

π

√√√√√ τ ⋄k
(ρ⋄k)

2
+

τθ
(∆τu+ρ)2

(τ ⋄k/ρ
⋄
k −∆)2 + (τ ⋄k/ρ

⋄
k +

τθ
∆τu+ρ

)2/τu(
∆+ τθ

∆τu+ρ

)2 ,
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so that the average trading volume is given by√
2

π

m∑
k=1

λk

√√√√√ τ ⋄k
(ρ⋄k)

2
+

τθ
(∆τu+ρ)2

(τ ⋄k/ρ
⋄
k −∆)2 + (τ ⋄k/ρ

⋄
k +

τθ
∆τu+ρ

)2/τu(
∆+ τθ

∆τu+ρ

)2 .

When all agents in the economy have the same risk aversion coefficient ρ (and then the same

endogenous signal precision), the average trading volume is simplified as

n
√
2/π
√

∆/ρ+ 1/τu.

Moreover, simple average reduces trading volume. Consequently, imposing the protocol of

adopting the SAEAOS for larger networks within each social group on the entire economy

reduces trading volume. □

Proof of Proposition 8

Denote x̆∗
i =

∑
j ̸=i x̃

∗
j + x∗

i . By the strict concavity of function U(·), we have

U(Wj((x̆
∗
i + δi)/n)) ≤ U(Wj(x̆

∗
i /n)) +∇U(Wj(x̆

∗
i /n))δi/n,

and the inequality becomes strict if δi ̸= 0. Taking the expectation on both sides of the

preceding inequality and noting the fact that δi is independent of the other random variables

in the model, the part (i) follows. The proofs of parts (ii) and (iii) are similar to that of part

(i). □
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