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 A B S T R A C T

In an imperfectly competitive market, we find that an institutional investor with an information 
advantage consistently earns higher expected trading profits than sophisticated individual 
investors who internalize their price impact. However, when noise-trading volume and the 
noise-to-signal ratio are sufficiently high, the institutional investor underperforms naive individ-
ual investors who act as price-takers. The aggressive trading behavior of naive investors, driven 
by their failure to account for price impact, forces the institutional investor to reduce his trading 
aggressiveness. Our findings highlight that, under certain conditions, the irrationality of naive 
traders can erode the advantages of information-driven trading strategies.

. Introduction

On the demand side of financial markets, investors are typically categorized into institutional investors, who possess the ability 
o produce information, and individual investors, who tend to be less informed. In classical perfectly competitive markets (Grossman 
nd Stiglitz, 1980), investors with an information advantage (institutional investors) consistently achieve higher expected trading 
rofits relative to their less-informed counterparts (individual investors). However, substantial evidence indicates that large financial 
nstitutions exert significant market influence. Moreover, with algorithms now becoming an essential feature of institutional order 
xecutions, individual traders’ order flow may even exhibit a larger average trade size than other flows (Boehmer et al., 2021).1 In 
ight of these developments, this paper investigates whether an institutional investor, endowed with an information advantage, can 
till outperform less-informed individual investors in an imperfectly competitive market.
We consider a financial market in which a single risky asset is traded by a finite number of investors, who differ in their 

nformation advantages and levels of rationality, alongside noise traders. There are three types of investors. The first is an 
nstitutional investor, who possesses complete information about the market. The remaining investors have access to a single piece of 
symmetric information alongside a public signal, yet they differ in how they leverage this information. Among them, sophisticated 
ndividual investors act strategically, internalizing the impact of their demand on asset prices when formulating optimal demand 
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1 Previous studies typically treat individual investors as small competitive traders (Kacperczyk et al., 2025) and many researchers use trade size as a proxy 
or retail order flow (Campbell et al., 2009). However, with the rise of algorithmic trading in the early 2000s, institutional investors have started to split their 
rades. As a result, trade-size partitioning has become significantly less effective as a proxy for retail order flow. Furthermore, evidence indicates that retail 
nvestors tend to have a meaningful influence on the returns of stocks with small market capitalization (Kumar and Lee, 2006), and it is well known that the 
arket for such stocks is imperfectly competitive.
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Table 1
Intuition for results on expected trading profits: We simplify the main model to a two-player game (the institutional investor (𝐼) vs. the individual 
investor) with two strategies (aggressive (𝐴) or conservative (𝐶) trading strategies). The individual investor can be either sophisticated (𝑆) or 
naive (𝑁). The payoff matrix on the left represents the real payoffs recognized by investor 𝐼 and investor 𝑆, while the ‘‘fictional’’ payoff matrix 
on the right reflects the mistakes made by investor 𝑁 in estimating payoffs resulting from failing to internalize his price impact.
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chedules. In contrast, naive individual investors are unaware of their price impact and perceive themselves as price-takers, assuming 
heir trades have no influence on market prices.2 The interaction among the demand schedules of all investors, combined with the 
resence of noise trading, determines the endogenous equilibrium price. This price reflects the aggregation of all market information 
nd noise.
We analyze the expected trading profits of different investors, focusing on the interplay between two key effects: the positive 

nformation effect, reflected in information efficiency (Rahi and Zigrand, 2018; Lou and Rahi, 2023), and the negative risk effect, 
haracterized by market-implied risk aversion—defined as the sum of price impact and conditional uncertainty regarding the asset 
ayoff. The institutional investor, endowed with superior access to information, naturally benefits from a stronger information effect. 
owever, the magnitude of the risk effect varies with the rationality of individual investors and market conditions, particularly 
he volume of noise trading and the noise-to-signal ratio. Our analysis reveals that while the institutional investor consistently 
utperforms sophisticated individual investors across all market conditions, there exist scenarios—specifically when noise-trading 
olume and the noise-to-signal ratio are sufficiently high—where the institutional investor may underperform naive individual 
nvestors.
When all individual investors are sophisticated, our analytical and numerical analysis demonstrates that the institutional investor 

onsistently outperforms sophisticated individual investors. In markets with sufficiently large noise-trading volume, excessive noise 
ecomes embedded in prices, reducing their informativeness in forecasting fundamentals. Consequently, sophisticated individual 
nvestors place less weight on the informational content of prices and trade more aggressively against price movements. This 
ncreased trading activity enhances liquidity for the institutional investor, thereby reducing his price impact and weakening the 
ssociated risk effect. As noise-trading volume gradually decreases, the institutional investor begins to experience a more pronounced 
egative risk effect. Nevertheless, the presence of imperfect competition ensures that the institutional investor’s information 
dvantage persists. Consequently, the positive information effect consistently dominates the trade-off, enabling the institutional 
nvestor to outperform sophisticated individual investors.
The results differ significantly when all individual investors are naive and act as price-takers. Our analysis demonstrates that the 

nstitutional investor cannot outperform naive individual investors when both noise-trading volume and the noise-to-signal ratio are 
ufficiently high. The intuition is illustrated in Table  1. Naive individual investors, perceiving themselves as price-takers, mistakenly 
elieve that their trading does not affect the equilibrium price. Consequently, they tend to trade more aggressively—buying heavily 
n positive signals and selling on negative ones. This behavior is captured by the ‘‘fictional’’ payoff matrix in the right table, where 
he payoffs for naive investors (𝜋𝑁 (𝐴,𝐴) > 𝜋𝑁 (𝐴,𝐶) and 𝜋𝑁 (𝐶,𝐴) > 𝜋𝑁 (𝐶,𝐶)) reflect their belief that their trades have no price 
mpact. Recognizing the irrationality of naive investors, the institutional investor anticipates their aggressive trading behavior and 
s compelled to reduce his own trading aggressiveness, despite possessing an informational advantage. The institutional investor’s 
otential gains from additional information are outweighed by the diminished profit share. In essence, the irrationality of naive 
ndividual investors serves as a commitment device, embedding their aggressive trading into the market dynamics.
The institutional investor’s advantage stems from more information, but this is offset by the disadvantage arising from naive 

ndividual investors’ commitment to aggressive trading. When the noise-trading volume is sufficiently large, the equilibrium price 
ariance also rises. This leads to a decline in the institutional investor’s information effect because the information efficiency 
easures for both institutional and individual investors approach one. Additionally, when the noise-to-signal ratio is sufficiently 
arge, naive individual investors receive imprecise information. The resulting increase in payoff uncertainty, due to less precise 
rivate signals, reduces the price sensitivity of naive individual investors’ demands. This reduction in price sensitivity, in return, 
mplifies the price impact of the institutional investor. Consequently, in this scenario, the risk effect becomes more pronounced for 
he institutional investor. Hence, naive individual investors outperform the institutional investor.
Our findings for the two special cases also extend to the general model, where both sophisticated and naive individual investors 

articipate in the market. However, the aggressive trading behavior of naive investors, driven by their failure to internalize price 

2 The institutional investor tends to be more experienced and can accurately assess their price impact. In contrast, individual investors may fail to recognize 
hat their trading activity affects asset prices, or even if they do, they often lack the ability to calculate it correctly due to limitations such as a lack of investment 
xperience and understanding of the market environment.
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impact, imposes negative externalities on all market participants. Specifically, we find that the expected trading profits of all 
investors increase as more individual investors transition from naive to sophisticated. Furthermore, we demonstrate the robustness 
of our results by examining two extensions: (i) a setting where the private signals of sophisticated and naive individual investors 
are heterogeneous, and (ii) a scenario in which naive investors exhibit partial awareness of their price impact.

Our imperfectly competitive market equilibrium is based on the seminal framework of Kyle (1989) (see Zhou, 2022; Glebkin 
et al., 2023; Anthropelos and Robertson, 2024; Kacperczyk et al., 2025 for recent extensions) and is most related to Nezafat and 
Schroder (2023), which theoretically establish the existence of a zero-precision symmetric equilibrium in an imperfectly competitive 
market.3 Two key distinctions differentiate our study from Nezafat and Schroder (2023). First, while all traders in Nezafat and 
Schroder (2023) are rational, we introduce irrationality for some individual investors. Specifically, naive individual investors are 
unaware of their price impact and perceive themselves as price-takers. Second, while Nezafat and Schroder (2023) focus on the 
existence of a zero-precision equilibrium with cost-free signals, our study investigates whether unconsciousness can strictly dominate 
rationality and survive in the long run.4 Since unconsciousness acting likes a commitment device in a standard Cournot model, 
institutional investors underperform naive individual investors who consider themselves to be price-takers when noise-trading 
volume and the noise-to-signal ratio for information are sufficiently large.

We contribute to the emerging literature on behavioral rational expectations equilibrium (REE). Banerjee et al. (2009) 
and Banerjee (2011) integrate REE with disagreement frameworks, allowing investors to underestimate the precision of other 
investors’ private information. Basak and Buffa (2019) examine the decision-making of financial institutions in the presence of 
novel implementation frictions that generate operational risk. A more sophisticated model produces a more informative signal about 
investment opportunities by leveraging advanced IT infrastructure and data analytics. However, the use of these technologies also 
increases susceptibility to operational errors. Mondria et al. (2022) propose an optimal inattention–style variant of partial cursedness, 
where traders observe prices but employ noisy signals to infer the underlying information and can pay a cost to reduce the noise. 
They endogenize traders’ sophistication levels, demonstrating that sophistication acquisition can exhibit complementarities. Eyster 
et al. (2019) model a financial market in which some traders of a risky asset fail to fully appreciate what prices convey about others’ 
private information. Malikov and Pasquariello (2022) characterize quantitative investing as myopic due to its reliance on backtested 
trading strategies; that is, quantitative investors are unaware that other investors are aware of their existence. While we share the 
feature that some traders irrationally neglect rational elements in financial markets, our focus differs.

Regarding the economic mechanism, our study is closely related to Kyle and Wang (1997), who show that overconfidence may 
strictly dominate rationality and survive in the long run because overconfidence functions as a commitment device in a standard 
Cournot duopoly model. Xiong and Yang (2024) also incorporate a commitment mechanism, albeit in a different context. They show 
that corporate social responsibility toward consumers can facilitate a commitment to lower product prices, which helps resolve the 
coordination problem among consumers and increases firm profits, thereby supporting the notion of ‘‘doing well by doing good’’. 
In our study, this commitment device arises from naive investors’ unconsciousness of their price impact. Similarly, commitment can 
be used as a device to enhance profits. However, while the commitment in Kyle and Wang (1997) stems from overconfidence, it 
originates from unconsciousness in our framework.

The remainder of the paper is organized as follows. Section 2 introduces the model. Section 3 establishes the equilibrium. 
Sections 4 and 5 examine two special cases, respectively: one in which all individual investors behave strategically, and the other 
in which all individual investors act as price-takers. Section 6 analyzes the more general case of the coexistence of all three types 
of investors. Section 7 discusses the evidence supporting the model’s assumptions, along with its empirical relevance and policy 
implications. Section 8 concludes. Further discussions are provided in Appendix  A, and all proofs are contained in Appendix  B.

2. The model

2.1. Model setup

Assets: Consider a Kyle (1989)-type economy with imperfect competition. The financial market consists of a risk-free asset, with 
a normalized price and payoff of 1, and a risky asset with price 𝑝 and a random payoff 𝜃 ∼  (0, 1∕𝜏𝜃), 𝜏𝜃 > 0. To prevent prices from 
being fully revealing, there is also per-capita random demand by noise traders 𝑢 ∼  (0, 1∕𝜏𝑢), 𝜏𝑢 = 1∕𝜎2𝑢 , where 𝑢 is independent of 
other random variables.5

3 The model in Nezafat and Schroder (2023) encompasses two stages: an information-acquisition stage and a trading stage. In the information-acquisition 
stage, each investor chooses a signal precision to maximize his expected utility at the trading stage accounting for the price impact in the trading stage and the 
influence of his precision choice on the trading strategies of other market participants. The reduction in payoff uncertainty resulting from a more precise private 
signal enhances the price sensitivity (as well as the signal sensitivity) of the deviating investor’s demand, thereby reducing the price impact of the conforming 
investors. Moreover, the decline in conforming investors’ price impact increases their demand-function price sensitivities, further reducing price impact. Lower 
price impact (i.e., more liquid markets) generated by the deviating investor’s improved signal induces all rational investors to trade more aggressively (i.e., increase 
the absolute size of their trades), thereby reducing the stock’s equilibrium absolute risk premium. A zero-precision equilibrium arises when the utility cost of 
the lower risk premium exceeds the utility benefit from more precise private information.

4 Furthermore, Proposition 2 in Nezafat and Schroder (2023) shows that when noise-trading volume is sufficiently large, a deviating trader benefits from a 
positive-precision signal only when the absolute expected noise trading is small (i.e., the mean of the noise trading is small). This contrasts with our Proposition 
3, which does not depend on the mean of noise trading (i.e., our main results remain valid even for a high mean of noise trading).

5 For simplicity, we assume zero means for the random variables 𝜃 and 𝑢. However, our main results continue to hold even in more general cases with 
nonzero means.
3 
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Preference: There are 𝑛 ≥ 3 investors,6 who are divided into three groups: an institutional investor, 𝑚 sophisticated individual 
investors, and 𝑛−𝑚−1 naive individual investors, as detailed later. The utility of investor 𝑖, who buys 𝑥𝑖 ∈ R units of the risky asset 
at price 𝑝 ∈ R, is given by

−exp{−𝜌𝑥𝑖(𝜃 − 𝑝)},

where 𝜌 is the constant absolute risk aversion (CARA) parameter. Without loss of generality, we assume that all investors have zero 
initial wealth due to the CARA assumption, which abstracts away wealth effects.

Institutional investors: We assume that there is only one investor (𝑖 = 1) who possesses all the information in the economy.7 
Throughout this paper, we refer to this investor with an information advantage as the institutional investor. Specifically, each 
individual investor 𝑖 = 2,… , 𝑛 observes a private signal 𝑦𝑖 = 𝜃 + 𝜖𝑖, where 𝜖𝑖 ∼  (0, 1∕𝜏𝜖) and 𝜏𝜖 > 0. Additionally, there is a public 
signal 𝑦1 = 𝜃 + 𝜖1, where 𝜖1 ∼  (0, 1∕𝜏𝜖). The idiosyncratic noise terms {𝜖1,… , 𝜖𝑛} are mutually independent and independent of 
other random variables in the model. The institutional investor possesses all the information in the market; that is, his information 
set is given by {𝑦1, 𝑦2,… , 𝑦𝑛}. The institutional investor behaves strategically since he tends to be experienced in financial markets 
and can accurately calculate and estimate his price impact. Following a similar analysis to Kyle (1989), the institutional investor’s 
optimal demand is given by 

𝑥∗1 =
E[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛, 𝑝] − 𝑝

𝜆1 + 𝜉1
, 𝜉1 = 𝜌Var[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛, 𝑝], (1)

where 𝜆1 > 0, which will be generated endogenously, denotes the institutional investor’s price impact. The institutional investor 
realizes that his demand has an impact on the equilibrium price, and incorporates this impact when optimizing his demand schedule.

Sophisticated individual investors: The individual investors are assumed to be either strategic or price-takers. We refer to strategic 
individual investors as sophisticated, and price-taking individual investors as naive. The information set of individual investor 
𝑖 = 2,… , 𝑛 is {𝑦1, 𝑦𝑖}.8 The optimal demand of sophisticated individual investor 𝑖 = 2,… , 𝑚 + 1 is given by 

𝑥∗𝑖 =
E[𝜃|𝑦1, 𝑦𝑖, 𝑝] − 𝑝

𝜆𝑠 + 𝜉𝑠
, 𝜉𝑠 = 𝜌Var[𝜃|𝑦1, 𝑦𝑖, 𝑝], (2)

where 𝜆𝑠 > 0, which will be generated endogenously, denotes the price impact of sophisticated individual investors 2,… , 𝑚 + 1. 
Previous studies typically treat individual investors as small competitive traders (Kacperczyk et al., 2025), and trade size is often 
used as a proxy for retail order flow (Campbell et al., 2009). However, with the rise of algorithmic trading in the early 2000s, 
trade-size partitioning has become significantly less effective as a proxy for retail order flow. In fact, the retail order flow may 
exhibit a larger average trade size compared to other flows (Boehmer et al., 2021).

Naive individual investors: A key feature of the model is that some individual investors perceive themselves as price-takers. Naive 
individual investors fail to realize that their demands have an impact on asset prices, or even if they do, they are unable to calculate 
this impact correctly due to limitations such as limited investment experience or limited understanding of the market environment, 
etc. The optimal demand of naive individual investors 𝑗 = 𝑚 + 2,… , 𝑛 is given by9

𝑥∗𝑗 =
E[𝜃|𝑦1, 𝑦𝑗 , 𝑝] − 𝑝

𝜉𝑛
, 𝜉𝑛 = 𝜌Var[𝜃|𝑦1, 𝑦𝑗 , 𝑝]. (3)

Even though naive investors consider themselves to be price-takers, their trading actually impacts the equilibrium price, as indicated 
by the market-clearing condition (5). In this regard, we are related to the emerging literature on behavioral rational expectations 
equilibrium such as Eyster et al. (2019), Mondria et al. (2022), and Malikov and Pasquariello (2022).

2.2. Discussion of assumptions

We summarize the main characteristics of the model setup in Table  2 and discuss its underlying assumptions. The model is 
designed to clearly differentiate between two key features: information advantage and rationality.

2.2.1. Why do sophisticated individual investors lack an information advantage?
The framework deliberately differentiates between two key features: rationality (the ability to internalize price impact) and 

information asymmetry (the possession of superior information). The model categorizes investors into three types: institutional, 
sophisticated individual, and naive individual. Among these, the institutional investor is the only participant endowed with an 
informational advantage, as they observe all private signals available in the market. This design focuses on isolating and analyzing 
the interplay between information asymmetry and price impact in shaping trading outcomes. Existing literature provides substantial 
evidence for institutional investors’ informational advantages over individual counterparts.10 Sophisticated individual investors, 

6 When 𝑛 = 2, a linear equilibrium does not exist, see Eq.  (B.1) in the Appendix. This aligns with Proposition 5.1 in Kyle (1989), which states that in the 
absence of uninformed investors, a linear equilibrium exists only when the number of informed investors is greater than or equal to three.

7 Our results extend to a more general setting where multiple investors have access to all the information in the market.
8 The model can also be nested within the framework of information sharing (Colla and Antonio, 2010; Ozsoylev and Walden, 2011; Han and Yang, 2013; Lou 

and Yang, 2023), where the information network is represented by a star structure. In this structure, investor 1 is the central node who initially has access to 
a private signal 𝑦1, while the other investors 𝑖 = 2,… , 𝑛 are non-central nodes, each initially possessing an individual private signal 𝑦𝑖.

9 Due to symmetry, 𝜆 + 𝜉  and 𝜉  do not depend on the specific indices 𝑖 and 𝑗, respectively.
𝑠 𝑠 𝑛

4 
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Table 2
Assumptions and extensions.
 Institutional Sophisticated individual Naive individual  
 Information advantage ✓  
 Rationality ✓ ✓  
 Information set {𝑦1 , 𝑦2 ,… , 𝑦𝑛 , 𝑝} {𝑦1 , 𝑦𝑖 , 𝑝} {𝑦1 , 𝑦𝑗 , 𝑝}  
 Demand function Eq.  (1) Eq.  (2) Eq.  (3)  
 Extension I Appendix  A.1 Certainty equivalent/Standardized expected profits
 Extension II Appendix  A.4.1 Partial information asymmetry  
 Extension III Appendix  A.4.2 Partial awareness 

while rational in internalizing their price impact and acting strategically, have access to a more limited information set compared 
to institutional investors. Thus, sophisticated individual investors can be conceptualized as high-profile retail investors who exhibit 
rationality and strategic behavior but lack the informational advantage of institutional investors. In Appendix  A.4.1, we extend the 
model to consider an alternative specification where the information precision of sophisticated individual investors lies between 
that of institutional and naive individual investors, offering further insights into the role of partial information asymmetry.

2.2.2. Why cannot naive individual investors internalize price impact?
The assumption that naive individual investors are oblivious to their price impact simplifies the equilibrium characterization, 

enabling the model to focus on the role of irrational trading behavior. In fact, literature examining individual investors’ limited 
attention provides potential support for this hypothesis: Peng and Xiong (2006) examine how attention allocation affects asset price 
dynamics, revealing that investors’ limited attention leads to categorical learning behavior, prompting them to simplify complex 
information and make suboptimal decisions. Additionally, Barber and Odean (2008) find that individual investors exhibit strong 
susceptibility to attention-driven bias, disproportionately purchasing stocks with extensive media coverage or high price volatility, 
which typically underperform in the long term. In contrast, institutional investors demonstrate lower sensitivity to attention bias 
and greater reliance on systematic analysis. These behavioral patterns stemming from individual investors’ attention constraints 
underscore the challenges faced by naive retail investors in accurately assessing their price impact.

This assumption highlights how the aggressive trading strategies of naive individual investors, driven by their perceived inability 
to influence prices, can inadvertently affect institutional investors. Naive individual investors are modeled as price-takers, assuming 
their trades do not affect market prices. The model emphasizes that the irrationality of naive investors functions as a commitment 
mechanism, compelling them to trade more aggressively in response to their private signals. In practice, many naive individual 
investors may exhibit some degree of awareness of their price impact, even if they do not fully internalize it in their decision-making. 
Incorporating partial awareness into the model would enhance its realism and bridge the gap between naive and sophisticated 
investors. In Appendix  A.4.2, we extend the model to explore this scenario to show the robustness of our key mechanism.

2.2.3. Why do individual investors have a significant price impact?
The significant price impact attributed to individual investors in the model may appear counterintuitive, given their characteri-

zation as ‘‘small’’ and ‘‘retail-like’’. However, this outcome stems from the specific market structure and modeling assumptions. In 
an imperfectly competitive market, the price impact of a trader is determined not only by the size of their trades but also by the 
elasticity of demand exhibited by other market participants. Empirical evidence supports this notion, particularly in markets with low 
capitalization and liquidity. In such markets, even modest trading volumes—common among retail investors—can trigger significant 
price movements. With algorithms becoming an essential feature of institutional order executions, individual traders’ order flow 
may exhibit a larger average trade size than other flows (Boehmer et al., 2021). Additional supporting evidence is presented in 
Section 7.1. The model attributes significant price impact to naive individual investors because their aggressive, uncoordinated, and 
collective trading behavior disrupts equilibrium, amplifying market effects in an imperfectly competitive environment.

10 Field and Lowry (2009) demonstrate institutional investors possess superior capabilities in information acquisition and analysis, enabling them to make more 
rational and accurate investment decisions grounded in robust fundamental analysis. Ben-Rephael et al. (2017) identify a structural advantage in information 
ecosystems: institutions access diversified professional networks and real-time analytical tools, enabling faster assimilation of market signals, whereas individual 
investors face relatively limited access to information sources and exhibit slower processing speeds. In addition to these findings, Begenau et al. (2018) reveal 
that institutional investors leverage economies of scale to acquire big data and deploy AI analytics, potentially reducing marginal information costs – a critical 
capability unattainable for individual investors constrained by technological and budgetary limitations. Together, these studies substantiate the model’s premise 
that informational asymmetry stems not merely from data access disparities, but more crucially from institutional investors’ systemic advantages in information 
acquisition, processing efficiency, and analytical sophistication – advantages that sophisticated individual investors, despite their rationality, cannot replicate due 
to resource constraints and technological barriers.
5 
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2.3. Equilibrium definition

As is standard in the literature, we focus on linear equilibria in this paper. Specifically, the price of the risky asset is a linear 
function of investors’ signals and noise demand. Suppose that the equilibrium price takes the following linear form11: 

𝑝 = 𝜋1𝑦1 + 𝜋𝑠
𝑚+1
∑

𝑖=2
𝑦𝑖 + 𝜋𝑛

𝑛
∑

𝑗=𝑚+2
𝑦𝑗 + 𝛾𝑢. (4)

A linear Bayesian Nash equilibrium {𝑝, 𝑥∗1 , 𝑥∗𝑖 , 𝑥∗𝑗 } is defined as a linear price function 𝑝, together with the demands 𝑥∗1 for the 
institutional investor, 𝑥∗𝑖 , 𝑖 = 2,… , 𝑚+ 1 for sophisticated individual investors, and 𝑥∗𝑗 , 𝑗 = 𝑚+ 2,… , 𝑛 for naive individual investors, 
such that

(i) Institutional, sophisticated individual, and naive individual investors submit orders that maximize their expected utility, as 
defined in Eqs. (1), (2), and (3);

(ii) The market-clearing condition 

𝑥∗1 +
𝑚+1
∑

𝑖=2
𝑥∗𝑖 +

𝑛
∑

𝑗=𝑚+2
𝑥∗𝑗 + 𝑛𝑢 = 0 (5)

holds almost surely.12

Eq.  (5) indicates that the naive individual investors also exert price impact. In this paper, we are interested in whether the 
institutional investor can beat individual investors in the sense that the institutional investor has higher trading profits than 
individual investors.13

3. Equilibrium characterization

In this section, we establish the existence of linear Bayesian Nash equilibria using the first-conjecture-then-verification approach, 
which is widely used in the literature (Kyle, 1989; Hellwig, 1980). Since sophisticated and naive individual investors differ in their 
awareness of their price impact on equilibrium price, their demand sensitivities to price information vary, leading to different price 
coefficients 𝜋𝑠 and 𝜋𝑛 in (4). Based on the equilibrium price form (4), from the perspective of a sophisticated individual investor 
who observes {𝑦1, 𝑦𝑖, 𝑝}, the price information 𝑝 is equivalent to

𝑠𝑠𝑝,𝑖 =
𝑝 − 𝜋1𝑦1 − 𝜋𝑠𝑦𝑖

𝜋𝑠(𝑚 − 1) + 𝜋𝑛(𝑛 − 𝑚 − 1)

=∶ 1
𝜋𝑠(𝑚 − 1) + 𝜋𝑛(𝑛 − 𝑚 − 1)

⎡

⎢

⎢

⎣

𝜋𝑠
𝑚+1
∑

𝑟=2,𝑟≠𝑖
𝑦𝑟 + 𝜋𝑛

𝑛
∑

𝑗=𝑚+2
𝑦𝑗 + 𝛾𝑢

⎤

⎥

⎥

⎦

=∶ 𝜃 + 𝑣𝑠
𝑚+1
∑

𝑟=2,𝑟≠𝑖
𝜖𝑟 + 𝑞𝑠

𝑛
∑

𝑗=𝑚+2
𝜖𝑗 + 𝑧𝑠𝑢,

where

𝑣𝑠 =
𝜋𝑠

𝜋𝑠(𝑚 − 1) + 𝜋𝑛(𝑛 − 𝑚 − 1)
, (6)

𝑞𝑠 =
𝜋𝑛

𝜋𝑠(𝑚 − 1) + 𝜋𝑛(𝑛 − 𝑚 − 1)
, (7)

𝑧𝑠 =
𝛾

𝜋𝑠(𝑚 − 1) + 𝜋𝑛(𝑛 − 𝑚 − 1)
. (8)

Applying the projection theorem for normal random variables, we obtain

E[𝜃|𝑦1, 𝑦𝑖, 𝑝] =
𝜏𝜖(𝑦1 + 𝑦𝑖) + 𝛩𝑠𝑠𝑠𝑝,𝑖

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑠 =∶ 𝛼𝑠1𝑦1 + 𝛼𝑠𝑜𝑦𝑖 + 𝛽𝑠𝑝,

where

𝛩𝑠 =
[

(𝑣2𝑠 (𝑚 − 1) + 𝑞2𝑠 (𝑛 − 𝑚 − 1))∕𝜏𝜖 + 𝑧2𝑠∕𝜏𝑢
]−1 , (9)

11 Here we postulate that the coefficients on the signals 𝑦2 ,… , 𝑦𝑚+1 (𝑦𝑚+2 ,… , 𝑦𝑛) in the conjectured linear equilibrium price 𝑝 are identical because sophisticated 
(naive) individual investors are symmetric in the model. Additionally, since we assume that all random variables have zero mean without loss of generality, 
there is no intercept in the conjectured price function 𝑝.
12 Alternatively, we can interpret −𝑢 as the per-capita random supply in the market.
13 In Appendix  A.1, we discuss both certainty equivalent and standardized expected trading profit (adjusted for information precision). Certainty equivalent can 

be treated as a risk-adjusted measure of investor performance. Given that information is costly and signal precision varies across investors, we further compare 
standardized trading profits between investors in Appendix  A.1.
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𝛼𝑠1 =
𝜏𝜖 − 𝛩𝑠 𝜋1

𝜋𝑠(𝑚−1)+𝜋𝑛(𝑛−𝑚−1)

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑠 ,

𝛼𝑠𝑜 =
𝜏𝜖 − 𝛩𝑠𝑣𝑠

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑠 ,

𝛽𝑠 = 𝛩𝑠

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑠
1

𝜋𝑠(𝑚 − 1) + 𝜋𝑛(𝑛 − 𝑚 − 1)
.

The parameters 𝛼𝑠1, 𝛼𝑠𝑜 , and 𝛽𝑠 measure sophisticated individual investors’ expectation sensitivity to public information, private 
information, and price, respectively.

Similarly, based on the equilibrium price form (4), from the perspective of a naive individual investor who observes {𝑦1, 𝑦𝑗 , 𝑝}, 
the price information is equivalent to

𝑠𝑛𝑝,𝑗 =
𝑝 − 𝜋1𝑦1 − 𝜋𝑛𝑦𝑗

𝜋𝑠𝑚 + 𝜋𝑛(𝑛 − 𝑚 − 2)

=∶ 1
𝜋𝑠𝑚 + 𝜋𝑛(𝑛 − 𝑚 − 2)

[

𝜋𝑠
𝑚+1
∑

𝑖=2
𝑦𝑖 + 𝜋𝑛

𝑛
∑

𝑟=𝑚+2,𝑟≠𝑗
𝑦𝑟 + 𝛾𝑢

]

=∶ 𝜃 + 𝑣𝑛
𝑚+1
∑

𝑖=2
𝜖𝑖 + 𝑞𝑛

𝑛
∑

𝑟=𝑚+2,𝑟≠𝑗
𝜖𝑟 + 𝑧𝑛𝑢,

where

𝑣𝑛 =
𝜋𝑠

𝜋𝑠𝑚 + 𝜋𝑛(𝑛 − 𝑚 − 2)
, (10)

𝑞𝑛 =
𝜋𝑛

𝜋𝑠𝑚 + 𝜋𝑛(𝑛 − 𝑚 − 2)
, (11)

𝑧𝑛 =
𝛾

𝜋𝑠𝑚 + 𝜋𝑛(𝑛 − 𝑚 − 2)
. (12)

Applying the projection theorem for normal random variables, we obtain

E[𝜃|𝑦1, 𝑦𝑗 , 𝑝] =
𝜏𝜖(𝑦1 + 𝑦𝑗 ) + 𝛩𝑛𝑠𝑛𝑝,𝑗

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑛 =∶ 𝛼𝑛1𝑦1 + 𝛼𝑛𝑜𝑦𝑗 + 𝛽𝑛𝑝,

where

𝛩𝑛 =
[

(𝑣2𝑛𝑚 + 𝑞2𝑛 (𝑛 − 𝑚 − 2))∕𝜏𝜖 + 𝑧2𝑛∕𝜏𝑢
]−1 , (13)

𝛼𝑛1 =
𝜏𝜖 − 𝛩𝑛 𝜋1

𝜋𝑠𝑚+𝜋𝑛(𝑛−𝑚−2)

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑛 ,

𝛼𝑛𝑜 =
𝜏𝜖 − 𝛩𝑛𝑞𝑛

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑛 ,

𝛽𝑛 = 𝛩𝑛

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑛
1

𝜋𝑠𝑚 + 𝜋𝑛(𝑛 − 𝑚 − 2)
.

The parameters 𝛼𝑛1 , 𝛼𝑛𝑜 , and 𝛽𝑛 measure naive individual investors’ expectation sensitivity to public information, private information, 
and price, respectively.

For the institutional investor who observes {𝑦1, 𝑦2,… , 𝑦𝑛, 𝑝}, based on the equilibrium price form (4) and applying the projection 
theorem for normal random variables, we have

E[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛, 𝑝] = E[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛] =
𝜏𝜖

𝜏𝜃 + 𝑛𝜏𝜖

𝑛
∑

𝑖=1
𝑦𝑖,

where we use the fact that the price 𝑝 is redundant for the institutional investor, given his access to full market information.
Furthermore, the conditional uncertainty about the fundamental for the institutional investor, strategic individual investors, and 

naive individual investors is respectively given by

Var[𝜃|𝑦1,… , 𝑦𝑛, 𝑝] = Var[𝜃|𝑦1,… , 𝑦𝑛] =
1

𝜏𝜃 + 𝑛𝜏𝜖
, (14)

Var[𝜃|𝑦1, 𝑦𝑖, 𝑝] =
1

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑠 , (15)

Var[𝜃|𝑦1, 𝑦𝑗 , 𝑝] =
1

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑛 .

The market-clearing condition (5) indicates
𝜏𝜖

𝜏𝜃+𝑛𝜏𝜖

∑𝑛
𝑟=1 𝑦𝑟 − 𝑝

𝜆 + 𝜉
+

𝑚+1
∑ 𝛼𝑠1𝑦1 + 𝛼𝑠𝑜𝑦𝑖 + 𝛽𝑠𝑝 − 𝑝

𝜆 + 𝜉
+

𝑛
∑ 𝛼𝑛1𝑦1 + 𝛼𝑛𝑜𝑦𝑗 + 𝛽𝑛𝑝 − 𝑝

𝜉
+ 𝑛𝑢 = 0,
1 1 𝑖=2 𝑠 𝑠 𝑗=𝑚+2 𝑛
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Table 3
Notations.
 Symbol Definition  
 Exogenous  
 𝜃 Random payoff of the risky asset, 𝜃 ∼ 𝑁(0, 1∕𝜏𝜃 )  
 𝑢 Per-capita random demand of noise traders, 𝑢 ∼ 𝑁(0, 1∕𝜏𝑢)  
 𝜌 Risk aversion parameter  
 𝑛 Total number of investors  
 𝑚 Number of sophisticated individual investors  
 𝑦1 Public signal, 𝑦1 = 𝜃 + 𝜖1  
 𝑦𝑟 , 𝑟 = 2,… , 𝑛 Private signal of investor 𝑟, 𝑦𝑟 = 𝜃 + 𝜖𝑟, 𝜖𝑟 ∼ 𝑁(0, 1∕𝜏𝜖 )  
 Endogenous  
 
𝑝

𝜋1 Price sensitivity to public information  
 𝜋𝑠 Price sensitivity to private information of sophisticated individual investors  
 𝜋𝑛 Price sensitivity to private information of naive individual investors  
 𝛾 Price sensitivity to demand of noise traders  
 

𝑥𝑟

𝜆1 Price impact of the institutional investor  
 𝜆𝑠 Price impact of sophisticated individual investor  
 𝜉1 Risk aversion adjusted conditional variance for institutional investor  
 𝜉𝑠 Risk aversion adjusted conditional variance for sophisticated individual investors 
 𝜉𝑛 Risk aversion adjusted conditional variance for naive individual investors  
 𝛼𝑠

1 Sophisticated individual investor’s expectation sensitivity to public information  
 𝛼𝑛

1 Naive individual investor’s expectation sensitivity to public information  
 𝛼𝑠

𝑜 Sophisticated individual investor’s expectation sensitivity to private information  
 𝛼𝑛

𝑜 Naive individual investor’s expectation sensitivity to private information  
 𝛽𝑠 Sophisticated individual investor’s expectation sensitivity to price  
 𝛽𝑛 Naive individual investor’s expectation sensitivity to price  

which implies

𝑝 =
[

1
𝜆1 + 𝜉1

+
𝑚(1 − 𝛽𝑠)
𝜆𝑠 + 𝜉𝑠

+
(𝑛 − 𝑚 − 1)(1 − 𝛽𝑛)

𝜉𝑛

]−1
[

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1 + 𝜉1)

𝑛
∑

𝑟=1
𝑦𝑟 +

𝑚+1
∑

𝑖=2

𝛼𝑠1𝑦1 + 𝛼𝑠𝑜𝑦𝑖
𝜆𝑠 + 𝜉𝑠

+
𝑛
∑

𝑗=𝑚+2

𝛼𝑛1𝑦1 + 𝛼𝑛𝑜𝑦𝑗
𝜉𝑛

+ 𝑛𝑢

]

.

Matching coefficients over both right-hand sides of the preceding price function and the conjectured price function (4) leads to

𝛾 = 𝑛
[

1
𝜆1 + 𝜉1

+
𝑚(1 − 𝛽𝑠)
𝜆𝑠 + 𝜉𝑠

+
(𝑛 − 𝑚 − 1)(1 − 𝛽𝑛)

𝜉𝑛

]−1
, (16)

𝜋1 =
𝛾
𝑛

[

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1 + 𝜉1)

+
𝑚𝛼𝑠1

𝜆𝑠 + 𝜉𝑠
+

(𝑛 − 𝑚 − 1)𝛼𝑛1
𝜉𝑛

]

,

𝜋𝑠 =
𝛾
𝑛

[

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1 + 𝜉1)

+
𝛼𝑠𝑜

𝜆𝑠 + 𝜉𝑠

]

, (17)

𝜋𝑛 =
𝛾
𝑛

[

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1 + 𝜉1)

+
𝛼𝑛𝑜
𝜉𝑛

]

. (18)

Moreover, the price impact parameters should satisfy

𝜆1 =
[

𝑚(1 − 𝛽𝑠)
𝜆𝑠 + 𝜉𝑠

+
(𝑛 − 𝑚 − 1)(1 − 𝛽𝑛)

𝜉𝑛

]−1
, (19)

𝜆𝑠 =
[

1
𝜆1 + 𝜉1

+
(𝑚 − 1)(1 − 𝛽𝑠)

𝜆𝑠 + 𝜉𝑠
+

(𝑛 − 𝑚 − 1)(1 − 𝛽𝑛)
𝜉𝑛

]−1
. (20)

Similar to Kyle (1989), Eqs. (19) and (20) indicate that each investor’s price impact equals the reciprocal of the sum of the price 
sensitivities of all other investors. We now get a system of equilibrium Eqs. (16)–(20) with variables 𝜋𝑠, 𝜋𝑛, 𝜋1, 𝛾, 𝜆1, and 𝜆𝑠.14 
Furthermore, although naive individual investors perceive themselves as price-takers, they indeed exert price impact. Table  3 
summarizes the key variables in the model:

4. Institutional investors and sophisticated individuals

This section examines the case where all individual investors behave strategically, accounting for the impact of their demands 
on the asset price (i.e., 𝑚 = 𝑛 − 1), and investigates whether the institutional investor can beat sophisticated individual investors.

14 In Appendix  A.4, we extend the model to incorporate heterogeneity in the signal precision of the two types of individual investors and accounts for naive 
individual investors’ partial awareness of their price impact.
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4.1. Equilibrium

We first establish a linear Bayesian Nash equilibrium in the following proposition and then calculate the expected trading profits.

Proposition 1.  Suppose that all individual investors are sophisticated. Then there exists a linear Bayesian Nash equilibrium determined 
by the following system of equations

𝛾 = 𝑛
[

1
𝜆1 + 𝜉1

+
(𝑛 − 1)(1 − 𝛽𝑠)

𝜆𝑠 + 𝜉𝑠

]−1
, (21)

𝜋1 =
𝛾
𝑛

[

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1 + 𝜉1)

+
(𝑛 − 1)𝛼𝑠1
𝜆𝑠 + 𝜉𝑠

]

, (22)

𝜋𝑠 =
𝛾
𝑛

[

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1 + 𝜉1)

+
𝛼𝑠𝑜

𝜆𝑠 + 𝜉𝑠

]

, (23)

𝜆1 =
[

(𝑛 − 1)(1 − 𝛽𝑠)
𝜆𝑠 + 𝜉𝑠

]−1
, (24)

𝜆𝑠 =
[

(𝑛 − 2)(1 − 𝛽𝑠)
𝜆𝑠 + 𝜉𝑠

+ 1
𝜆1 + 𝜉1

]−1
, (25)

where

𝛼𝑠1 =

𝜏𝜖 −
1

1
𝜏𝜖

+ (𝑛−2)𝑧2𝑠
𝜏𝑢

𝜋1
𝜋𝑠

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ 𝑧2𝑠
𝜏𝑢

, 𝛼𝑠𝑜 =

𝜏𝜖 −
1

1
𝜏𝜖

+ (𝑛−2)𝑧2𝑠
𝜏𝑢

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ 𝑧2𝑠
𝜏𝑢

, (26)

𝛽𝑠 =

1
1

(𝑛−2)𝜏𝜖
+ 𝑧2𝑠

𝜏𝑢

1
(𝑛−2)𝜋𝑠

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ 𝑧2𝑠
𝜏𝑢

, 𝑧𝑠 =
𝛾

(𝑛 − 2)𝜋𝑠
. (27)

Proposition  1 establishes the financial market equilibrium in terms of the equilibrium price coefficients 𝛾, 𝜋1, and 𝜋𝑠, as well 
as traders’ price impacts 𝜆1 and 𝜆𝑠. The equilibrium system (21)–(25) can be directly derived from the system (16)–(20) by setting 
𝑚 = 𝑛 − 1 and omitting Eq.  (18), which corresponds to naive individual investors. Consistent with Kyle (1989), Eqs. (24) and (25) 
show that each investor’s price impact equals the reciprocal of the sum of the price sensitivities of all other investors.

The expected trading profits of the institutional investor (investor 1) are given by 

𝛱1 ∶= E[(𝜃 − 𝑝)𝑥∗1] =
Var(𝜃 − 𝑝) − Var[𝜃 − 𝑝|𝑦1, 𝑦2,… , 𝑦𝑛, 𝑝]

𝜆1 + 𝜉1
, (28)

where we utilize the relation in (1) and the law of total variance. Similarly, from (2), the (expected) trading profits of sophisticated 
individual investor 𝑖 = 2,… , 𝑛 are given by 

𝛱𝑠 ∶= E[(𝜃 − 𝑝)𝑥∗𝑖 ] =
Var(𝜃 − 𝑝) − Var[𝜃 − 𝑝|𝑦1, 𝑦𝑖, 𝑝]

𝜆𝑠 + 𝜉𝑠
, 𝑖 = 2,… , 𝑛. (29)

Following the definition of informational efficiency in the literature (Rahi and Zigrand, 2018; Lou and Rahi, 2023), we analogously 
define a measure of informational efficiency for predicting the asset return 𝜃 − 𝑝: 

𝛹1 ∶=
Var(𝜃 − 𝑝) − Var[𝜃 − 𝑝|𝑦1, 𝑦2,… , 𝑦𝑛, 𝑝]

Var(𝜃 − 𝑝)
=

Var(𝜃 − 𝑝) − Var[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛]
Var(𝜃 − 𝑝)

. (30)

Similarly, we also define 

𝛹𝑠 ∶=
Var(𝜃 − 𝑝) − Var[𝜃 − 𝑝|𝑦1, 𝑦𝑖, 𝑝]

Var(𝜃 − 𝑝)
=

Var(𝜃 − 𝑝) − Var[𝜃|𝑦1, 𝑦𝑖, 𝑝]
Var(𝜃 − 𝑝)

, 𝑖 = 2,… , 𝑛. (31)

Eqs. (28) and (29) indicate that investors’ trading profits are determined by two key factors: the information effect, captured by 
information efficiency, and the risk effect, characterized by market-implied risk aversion (i.e., the sum of price impact 𝜆 and the 
risk-aversion-adjusted conditional variance about the fundamental 𝜉).

Since the institutional investor possesses more information, the information efficiency is higher, i.e., 𝛹1 > 𝛹𝑠. Therefore, in a 
competitive setting, it is clear that the institutional investor can always beat individual investors.15 The analysis becomes more 
complex in an imperfectly competitive setting, as illustrated below. In such environments, price impact becomes significant and 
plays a crucial role. In addition to the information advantage, if the institutional investor also has lower market-implied risk 

15 When all investors act as price-takers, the trading profits of the institutional investor and individual investors are given by Eqs. (28) and (29) with 𝜆1 = 0
and 𝜆𝑠 = 0, respectively. It is evident that the institutional investor faces lower conditional uncertainty than individual investors, i.e., 𝜉1 < 𝜉𝑠. Additionally, due 
to the institutional investor’s information advantage, he is able to achieve higher trading profits than individual investors in such a competitive setting.
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aversion, he will achieve higher trading profits. However, if the institutional investor’s market-implied risk aversion is sufficiently 
high, whether he generates higher trading profits depends on which of the two conflicting effects—information advantage or 
illiquidity—dominates.

4.2. Market-implied risk aversion: Risk effect

Price impact refers to the change in asset prices resulting from investors’ trades. A higher price impact means that a demand shock 
will drive the price higher, potentially reducing investors’ trading profits. In the linearity framework, the price impact of one investor 
is determined by the reciprocal of the price sensitivity of the demand functions of his market counterparties (Kyle, 1989). When 
his counterparties have less price sensitivity, or in other words, exhibit more inelastic demand, any deviation from the investor’s 
equilibrium demand at any given price requires a larger price adjustment for the market to absorb the change. As a result, the 
investor experiences a higher price impact. Intuitively, less elastic demand from counterparties implies that his counterparties are 
less willing to provide liquidity to the investor, leaving the investor to face a more illiquid market.

In addition to the price impact parameter, the risk-aversion-adjusted conditional variance also has an effect on investors’ demand. 
Specifically, both a higher price impact and a larger risk-aversion-adjusted conditional variance generally lead to a reduction in 
investors’ demand. Throughout this paper, we refer to the sum of the price impact and the risk-aversion-adjusted conditional variance 
about the asset payoff as the market-implied risk aversion. The following proposition demonstrates the relationship between the price 
impact and market-implied risk aversion of the institutional investor and sophisticated individual investors.

Proposition 2.  Suppose that all individual investors are sophisticated. Then we have
(i) Price impact: 𝜆1 > 𝜆𝑠.
(ii) Risk effect: 𝜆1 + 𝜉1 ≥ 𝜆𝑠 + 𝜉𝑠 if (𝑛 − 1)(1 − 𝛽𝑠) ≤ 1. Furthermore, if (𝑛 − 1)(1 − 𝛽𝑠) > 1, then 𝜆1 + 𝜉1 < 𝜆𝑠 + 𝜉𝑠 if and only if 

𝜉1 <
[

1 −
𝛽𝑠

(𝑛 − 1)(𝑛 − 2)(1 − 𝛽𝑠)2

]

𝜉𝑠, (32)

and 𝜆1 + 𝜉1 > 𝜆𝑠 + 𝜉𝑠 otherwise.
Part (i) of Proposition  2 demonstrates that the institutional investor consistently faces a higher price impact compared to 

sophisticated individual investors. This discrepancy stems from the fact that risk-averse sophisticated individual investors trade 
less aggressively in response to price movements. Intuitively, two key factors drive this behavior. First, sophisticated individual 
investors possess less precise information, which amplifies their exposure to fundamental risk and consequently, reduces their trading 
aggressiveness. Second, their trading decisions incorporate information inferred from the equilibrium price—a consideration that 
the institutional investor does not need to account for—further diminishing their willingness to provide liquidity in response to price 
changes. As a result, sophisticated individual investors exhibit a reduced willingness to provide liquidity, effectively rendering the 
market more illiquid for the institutional investor. Consequently, the institutional investor experiences a larger price impact relative 
to individual investors.

Part (ii) of Proposition  2 indicates that the risk effect for the institutional investor is relatively weaker only when sophisticated 
individual investors place less reliance on price information to infer fundamentals. In markets with sufficiently large noise-trading 
volume, excessive noise becomes embedded in prices, reducing their informativeness in forecasting fundamentals. Consequently, 
sophisticated individual investors place less weight on the informational content of prices and trade more aggressively against price 
movements. This increased trading activity enhances liquidity for the institutional investor, thereby reducing his price impact and 
weakening the associated risk effect.

More explicitly, in the extreme case where sophisticated individual investors entirely disregard the informational content 
embedded in prices, the price impacts are characterized as follows

𝜆1 =
(

𝑛 − 1
𝜆𝑠 + 𝜉𝑠

)−1
, 𝜆𝑠 =

(

𝑛 − 2
𝜆𝑠 + 𝜉𝑠

+ 1
𝜆1 + 𝜉1

)−1
.

According to Part (i) of Proposition  2, the institutional investor should experience a weaker risk effect. Otherwise, if sophisticated 
individual investors have lower market-implied risk aversion 𝜆𝑠+𝜉𝑠, they become more willing to provide liquidity to the institutional 
investor. This, in turn, would lead to a lower price impact 𝜆1 for the institutional investor, contradicting the result established in 
Part (i) of Proposition  2. Therefore, when sophisticated individual investors disregard the informational content of prices, the more 
informed institutional investor faces a relatively weaker negative risk effect. The above arguments also apply to the setting where 
the individual investors learn from the price but the inference sensitivity 𝛽𝑠 is small.

4.3. Expected trading profits: information effect vs. risk effect

This subsection examines the impact of noise-trading volume. The parameter 𝜏−1𝑢  represents the uncertainty associated with noise 
trading, and is used to measure the trading volume by noise traders (Kovalenkov and Vives, 2014; Nezafat and Schroder, 2023).16

16 Noise-trading volume is typically defined as the expected absolute value of the amount traded by noise traders. We can observe that E|𝑛𝑢| = 𝑛𝜎𝑢
√

2∕𝜋 and 
consequently, it is reasonable to interpret 𝜎  as the noise-trading volume.
𝑢
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Fig. 1. The effect of noise-trading volume on the profit difference between institutional and sophisticated individual investors: This figure 
illustrates the impact of noise-trading volume on the difference between the trading profits of the institutional investor (𝛱1) and those of the 
sophisticated individual investors (𝛱𝑠) under three distinct parameter sets {𝜏𝜃 , 𝜏𝜖}. The risk aversion parameter is set to 𝜌 = 2 and the total 
number of investors in the market is 𝑛 = 10.

Proposition  3 discusses, and Fig.  1 numerically illustrates, how noise-trading volume affects the relative profits of the institutional 
and sophisticated individual investors.

Proposition 3.  Suppose that all individual investors are sophisticated. Then when the noise-trading volume 𝜏−1𝑢  is either sufficiently large 
or sufficiently small, the institutional investor consistently outperforms sophisticated individual investors.

When the noise-trading volume is sufficiently large (i.e., 𝜏𝑢 is sufficiently small), excessive noise is incorporated into the price. 
In this case, the price becomes less informative for predicting the fundamental value, and individual investors will disregard the 
information contained in the price when making optimal demand schedules, i.e., 𝛽𝑠 → 0 (Eyster et al., 2019). As explained earlier in 
(32), due to the lower conditional variance faced by the institutional investor, the market-implied risk aversion for the institutional 
investor in this scenario is lower than that for sophisticated individual investors. As a result, the institutional investor experiences 
a relatively weaker negative risk effect. Therefore, the institutional investor, who also benefits from a stronger information effect, 
faces a larger trading opportunity and achieves higher trading profits than sophisticated individual investors.

When the noise-trading volume is sufficiently low (i.e., 𝜏𝑢 is sufficiently large), sophisticated individual investors rely heavily on 
price to infer fundamental information, causing the inference sensitivity 𝛽𝑠 to approach its upper bound. As a result, the institutional 
investor experiences a higher market-implied risk aversion and a relatively stronger risk effect (Part (ii) of Proposition  2). However, 
in contrast to perfectly competitive markets, the price does not fully reveal all the information in the market due to imperfect 
competition,17 meaning that the information advantage of the institutional investor survives. Furthermore, more informed signals 
directly influence the information effect, while indirectly affecting the risk effect through the interaction between the institutional 
and individual investors. As a result, the information advantage effect of the institutional investor dominates the risk effect driven 
by higher market-implied risk aversion, leading to higher trading profits for the institutional investor compared to sophisticated 
individual investors. The following observation compares the performance of the institutional investor and sophisticated individual 
investors for intermediate values of 𝜏𝑢. Fig.  1 numerically shows that the institutional investor consistently outperforms the 
sophisticated individual investor in this range.

Observation 1.  The institutional investor consistently outperforms sophisticated individual investors for intermediate values of 𝜏𝑢.
While Proposition  3 demonstrates that the institutional investor can beat sophisticated individual investors in the two extreme 

cases of sufficiently large and small noise trading, Fig.  1 illustrates that the results in Proposition  3 also hold for intermediate 
values of 𝜏𝑢. In other words, the information advantage of the institutional investor always dominates the risk effect, ensuring that 
the institutional investor consistently outperforms sophisticated individual investors. We further decompose the two components, 
i.e., the information effect and risk effect in Fig.  2. First, as shown in Fig.  2, the relative risk effect of the institutional investor 
compared to sophisticated individual investors increases with the precision of noise trading 𝜏𝑢. When noise-trading volume is large 

17 Proposition 7.2 in Kyle (1989) indicates that the price in his model never reveals more than half of the private precision of informed speculators.
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Fig. 2. The impact of noise-trading volume on ratio of market-implied risk aversion and ratio of informational efficiency: This figure plots how 
noise-trading volume affects the ratio of market-implied risk aversion (𝜆𝑠+𝜉𝑠)∕(𝜆1+𝜉1) (represented by a solid line) and the ratio of informational 
efficiency 𝛹𝑠∕𝛹1 (represented by a dashed line). Each panel features two 𝑦-axes: the left 𝑦-axis corresponds to the ratio of market-implied risk 
aversion, while the right 𝑦-axis represents the ratio of informational efficiency. The 𝑥-axis spans the range of 𝜏𝑢 from 0.01 to 100. In the left 
panel, 𝜏𝜃 = 25 and 𝜏𝜖 = 5, whereas in the right panel, 𝜏𝜃 = 100 and 𝜏𝜖 = 1. The other parameters are set to 𝜌 = 2 and 𝑛 = 10.

(small) (i.e., 𝜏𝑢 is small (large)), the institutional investor experiences a relatively weaker (stronger) negative risk effect than that of 
sophisticated individual investors. Second, due to the information advantage, the institutional investor always experiences a higher 
information effect, as evidenced by the fact that the value of 𝛹𝑠∕𝛹1 is always lower than 1. Third, as 𝜏𝑢 increases, on the one hand, 
sophisticated individual investors infer more information from price (i.e., Var[𝜃|𝑦1, 𝑦𝑖, 𝑝] decreases). On the other hand, the variance 
of the asset return decreases as well (i.e., Var(𝜃 − 𝑝) decreases), see Appendix  A.2 for more detailed illustrations. As a result, the 
relative strength of the institutional investor’s information effect further amplifies, ensuring that the institutional investor always 
outperforms sophisticated individual investors.

5. Institutional investors and naive individuals

This section examines the case where all individual investors are naive, being unaware of their price impact and acting as 
price-takers (i.e., 𝑚 = 0), and investigates whether the institutional investor can outperform them.

5.1. Equilibrium

We first characterize a linear Bayesian Nash equilibrium in the following proposition, and then calculate the expected trading 
profits.

Proposition 4.  Suppose that all individual investors are naive. Then there exists a linear Bayesian Nash equilibrium determined by the 
following system of equations

𝛾 = 𝑛
[

1
𝜆1 + 𝜉1

+
(𝑛 − 1)(1 − 𝛽𝑛)

𝜉𝑛

]−1
, (33)

𝜋1 =
𝛾
𝑛

[

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1 + 𝜉1)

+
(𝑛 − 1)𝛼𝑛1

𝜉𝑛

]

,

𝜋𝑛 =
𝛾
𝑛

[

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1 + 𝜉1)

+
𝛼𝑛𝑜
𝜉𝑛

]

, (34)

𝜆1 =
[

(𝑛 − 1)(1 − 𝛽𝑛)
𝜉𝑛

]−1
, (35)

where

𝛼𝑛1 =

𝜏𝜖 −
1

1
𝜏𝜖

+ (𝑛−2)𝑧2𝑛
𝜏𝑢

𝜋1
𝜋𝑛

𝜏𝜃 + 2𝜏𝜖 +
1

1 𝑧2𝑛

, 𝛼𝑛𝑜 =

𝜏𝜖 −
1

1
𝜏𝜖

+ (𝑛−2)𝑧2𝑛
𝜏𝑢

𝜏𝜃 + 2𝜏𝜖 +
1

1 𝑧2𝑛

, (36)
(𝑛−2)𝜏𝜖
+ 𝜏𝑢 (𝑛−2)𝜏𝜖

+ 𝜏𝑢
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𝛽𝑛 =

1
1

(𝑛−2)𝜏𝜖
+ 𝑧2𝑛

𝜏𝑢

1
(𝑛−2)𝜋𝑛

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ 𝑧2𝑛
𝜏𝑢

, 𝑧𝑛 =
𝛾

(𝑛 − 2)𝜋𝑛
. (37)

Proposition  4 establishes the financial market equilibrium in terms of equilibrium price coefficients 𝜋1 and 𝜋𝑛 and traders’ price 
impacts 𝜆1 and 𝜆𝑛. The equilibrium system (33)–(35) can be directly obtained from the system (16)–(20) by setting 𝑚 = 0 and 
eliminating Eq.  (17), which corresponds to sophisticated individual investors. As in Kyle (1989), Eq. (35) reveals that the institutional 
investor’s price impact equals the reciprocal of the sum of the price sensitivities of all naive individual investors. Additionally, since 
naive individual investors neglect their own price impact, Eq. (17) is omitted from the system.

The (expected) trading profits of naive individual investors are given by

𝛱𝑛 ∶= E[(𝜃 − 𝑝)𝑥∗𝑗 ] =
Var(𝜃 − 𝑝) − Var[𝜃 − 𝑝|𝑦1, 𝑦𝑗 , 𝑝]

𝜉𝑛
, 𝑗 = 2,… , 𝑛.

We also define informational efficiency for predicting the asset return 𝜃 − 𝑝 for naive individual investors: 

𝛹𝑛 ∶=
Var(𝜃 − 𝑝) − Var[𝜃 − 𝑝|𝑦1, 𝑦𝑗 , 𝑝]

Var(𝜃 − 𝑝)
, 𝑗 = 2,… , 𝑛. (38)

Similar to Eqs. (28) and (29), naive individual investors’ trading profits are determined by two key factors: the information effect, 
captured by information efficiency, and the risk effect, which is solely characterized by the risk-aversion-adjusted conditional 
variance of the fundamental. Proposition  5 establishes the condition under which the institutional investor underperforms relative 
to naive individual investors.

Proposition 5.  Suppose that all individual investors are naive. Then when 𝜏𝑢 is sufficiently small, the institutional investor underperforms 
naive individual investors if the following condition holds: (𝑛2 − 4𝑛 + 2)𝜏𝜖∕𝜏𝜃 < 1.

The institutional investor may underperform naive individual investors, even though he can always beat sophisticated indi-
vidual investors. This occurs under conditions where both the noise-trading volume (i.e., Var(𝑢)) and the noise-to-signal ratio 
(i.e., Var(𝜖𝑖)∕Var(𝜃)) are sufficiently large. Intuitively, the institutional investor underperforms when the information effect is weak 
and the risk effect is significant. When the noise-trading volume is sufficiently large (i.e., 𝜏𝑢 is sufficiently small), the institutional 
investor’s information effect diminishes. This is because both the information efficiency measures 𝛹1 and 𝛹𝑛 approach one, as 
indicated by Eqs. (30) and (38).18 Additionally, when the noise-to-signal ratio is sufficiently large, naive individual investors receive 
imprecise information. The resulting increase in payoff uncertainty, due to less precise private signals, reduces the price sensitivity 
of naive individual investors’ demands. This reduction in price sensitivity, in return, amplifies the price impact of the institutional 
investor. Consequently, in this scenario, the risk effect becomes more pronounced for the institutional investor. To facilitate a clearer 
understanding of Proposition  5, we next provide a benchmark analysis.

Lemma 1.  When (1) neither institutional investors nor naive investors learn from prices (corresponding to a sufficiently large noise-trading 
volume), and (2) each investor makes decision based only on the prior information about fundamental 𝜃 ∼  (0, 1∕𝜏𝜃) (corresponding to a 
sufficiently large noise-to-signal ratio), a linear Bayesian Nash equilibrium exists with the equilibrium price given by

𝑝 = 𝛾𝑢,

where

𝛾 = 𝑛
(

𝑘
𝜆1 + 𝜉1

+ 𝑛 − 𝑘
𝜉𝑛

)−1
, 𝜆1 =

(

𝑘 − 1
𝜆1 + 𝜉1

+ 𝑛 − 𝑘
𝜉𝑛

)−1
, 𝜉1 = 𝜉𝑛 =

𝜌
𝜏𝜃

,

𝑘 (1 ≤ 𝑘 < 𝑛) represents the number of institutional investors—those who account for their price impact when making decisions—while 𝑛 is 
the total number of investors in the market. Furthermore, the expected trading profits satisfy

E[(𝜃 − 𝑝)𝑥∗𝑙 ] =
𝛾2

(𝜆1 + 𝜉1)𝜏𝑢
< E[(𝜃 − 𝑝)𝑥∗𝑗 ] =

𝛾2

𝜉𝑛𝜏𝑢
,

where 𝑥∗𝑙  and 𝑥∗𝑗  denote the equilibrium demands of institutional and naive investors, respectively. That is, institutional investors always 
underperform naive individual investors.

The benchmark in Lemma  1 offers a clear intuition for the results. Consider the scenario that all investors are naive and make 
decisions based solely on their prior information. Suppose now one investor becomes sophisticated (i.e., the institutional investor in 
Lemma  1) and begins to account for his price impact, this change enhances the benefit not only for himself but also for other naive 
investors. However, because naive individual investors trade more aggressively, the benefits are higher for them. Consequently, the 
institutional investor underperforms relative to naive individual investors. The following observation compares the performance 
of institutional investors and naive individual investors when 𝜏𝑢 or 𝜏𝜖∕𝜏𝜃 is relatively large. It numerically demonstrates that 
institutional investors outperform naive individual investors under these conditions.

18 This is because Var(𝜃 − 𝑝) → ∞ as 𝜏𝑢 → 0 (the coefficient 𝛾 is bounded away from zero for all sufficiently small 𝜏𝑢, see the proof of Proposition  5), while 
the conditional variances Var[𝜃|𝑦 , 𝑦 ,… , 𝑦 ] and Var[𝜃|𝑦 , 𝑦 , 𝑝] are bounded above by Var(𝜃).
1 2 𝑛 1 𝑖
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Fig. 3. The effect of noise-trading volume on the profit difference between institutional and naive individual investors: This figure illustrates 
how noise-trading volume affects the difference between the trading profits of the institutional investor (𝛱1) and those of the naive individual 
investors (𝛱𝑛). The left panel presents the results for three sets of parameters {𝜏𝜃 , 𝜏𝜖} that satisfy the condition of the institutional investor 
underperforming naive individual investors in Proposition  5. The right panel displays the results for three additional sets of parameters {𝜏𝜃 , 𝜏𝜖}
that do not meet the condition specified in Proposition  5. The risk aversion parameter is set to 𝜌 = 2, and the total number of investors in the 
market is 𝑛 = 10.

Fig. 4. Regions of institutional investor underperformance: This figure presents the parameter regions—defined by 𝜏𝜖∕𝜏𝜃 on the 𝑥-axis and 𝜏𝑢 on 
the 𝑦-axis—that determine whether the institutional investor can beat naive individual investors. The black area represents the set of parameters 
under which the institutional investor cannot outperform naive individual investors, while the blank area corresponds to the set of parameters 
under which the institutional investor can beat naive individual investors.

Observation 2.  The institutional investor outperforms the naive individual investors when 𝜏𝑢 or 𝜏𝜖∕𝜏𝜃 is relatively large.

Fig.  3 further shows numerical simulations under three representative parameter sets for cases where the condition in Proposition 
5 is violated and satisfied, respectively. And in Fig.  4, we present the parameter conditions, regarding 𝜏𝑢 and 𝜏𝜖∕𝜏𝜃 , that is necessary 
for the institutional investor to achieve superior performance compared to naive individual investors, providing evidence for 
Observation  2.
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5.2. Why does the institutional investor underperform?

We first illustrate the intuition in Table  1. We simplify the main model to a two-player game (the institutional investor (𝐼) versus 
the individual investor) with two strategies (aggressive (𝐴) or conservative (𝐶) trading strategies). The individual investor can be 
either sophisticated (𝑆) or naive (𝑁). The payoff matrix on the left represents the real payoffs recognized by investor 𝐼 and investor 
𝑆, while the ‘‘fictional’’ payoff matrix on the right reflects the mistakes made by investor 𝑁 in estimating payoffs as a result of 
failing to internalize his price impact.

The payoff matrix demonstrates three key characteristics in the main model. First, each investor’s trade exerts a price impact. 
Adopting strategy 𝐴 influences the equilibrium price and imposes negative externalities on other investors, as 𝜋𝑆 (𝐴,𝐴) < 𝜋𝑆 (𝐶,𝐴)
and 𝜋𝑆 (𝐴,𝐶) < 𝜋𝑆 (𝐶,𝐶) for investor 𝑆 and 𝜋𝐼 (𝐴,𝐴) < 𝜋𝐼 (𝐴,𝐶) and 𝜋𝐼 (𝐶,𝐴) < 𝜋𝐼 (𝐶,𝐶) for investor 𝐼 , because more trading drives 
the price up more. Second, the institutional investor possesses an information advantage over the individual investor. Investor 𝐼
tends to trade more aggressively when investor 𝑆 adopts a conservative strategy, i.e., 𝜋𝐼 (𝐴,𝐶) > 𝜋𝐼 (𝐶,𝐶). In contrast, lacking such an 
information advantage, investor 𝑆 remains conservative even if investor 𝐼 trades conservatively, i.e., 𝜋𝑆 (𝐶,𝐴) < 𝜋𝑆 (𝐶,𝐶). Combining 
these two characteristics, when one of the investors has already adopted an aggressive trading strategy, following with aggressive 
trading is suboptimal, even for an investor with an information advantage (i.e., 𝜋𝐼 (𝐴,𝐴) < 𝜋𝐼 (𝐶,𝐴) and 𝜋𝑆 (𝐴,𝐴) < 𝜋𝑆 (𝐴,𝐶)), which 
will impose too much impact on equilibrium price. Third, the naive individual investor behaves irrationally. Investor 𝑁 fails to 
internalize the impact of his own trading on the market. This leads to a belief that aggressive trading always yields higher payoffs, 
regardless of the other player’s strategy (i.e., investor 𝑁 believes 𝜋𝑁 (𝐴,𝐴) > 𝜋𝑁 (𝐴,𝐶) and 𝜋𝑁 (𝐶,𝐴) > 𝜋𝑁 (𝐶,𝐶)).

The irrationality of naive individual investors acts as a commitment mechanism, which renders the institutional investor to 
shrink his trading aggressiveness. As shown by the left panel in Table  1, when individual investors recognize their price impact, 
they understand that more aggressive trading diminishes their profits, particularly since they lack an information advantage. 
Consequently, sophisticated individual investors would trade the asset conservatively. Facing this situation, the institutional investor, 
who possesses an information advantage, can exploit profits through aggressive trading. Therefore, the institutional investor achieves 
a higher expected trading profit than sophisticated individual investors.

However, when naive individual investors consider themselves to be price-takers, they believe their tradings do not impact 
equilibrium price. As a result, they tend to buy more upon receiving good signals and sell more upon receiving negative signals.19 This 
behavior is depicted by the ‘‘fictional’’ payoff matrix in the right panel in Table  1. The institutional investor, aware of the irrationality 
of naive individual investors, anticipates that these investors will trade aggressively. This, in turn, forces the institutional investor 
to shrink his trading aggressiveness, despite having an information advantage. This is because the price impact is significant now 
due to the aggressive trading by all naive individual investors. The expansion of trading due to more accurate information cannot 
compensate for the declining share profits due to sensitive price movement.

Mathematically, we start with the equilibrium described in Proposition  4. Now, suppose there is only one naive individual 
investor who becomes aware of his price impact and switches to be a sophisticated individual investor. Holding other investors’ 
demand schedules and the equilibrium price form constant, his equilibrium price impact should be

𝜆𝑠 =
[

(𝑛 − 2)(1 − 𝛽𝑛)
𝜉𝑛

+ 1
𝜆1 + 𝜉1

]−1
.

Consequently, the market-implied risk shifts from 𝜉𝑛 to 𝜉𝑛 + 𝜆𝑠. This implies that, by considering his price impact, the sophisticated 
individual investor reduces his demand. In this sense, the irrationality of naive individual investors acts as a commitment mechanism, 
enabling them to impound aggressive trades into the market.20

Although our model is static and abstract by design, its implications resonate with several real-world episodes where naïve retail 
investors, through aggressive trading, exert substantial price pressure on institutional investors. A notable example is the GameStop 
(GME) short squeeze in January 2021.21 This episode illustrates how, under specific market conditions—such as low liquidity, 
low information quality, and concentrated retail participation—naïve investors who ignore their price impact can unintentionally 
dominate trading outcomes. While the GameStop event was highly contextual and temporary, it provides empirical intuition for the 
theoretical mechanism we highlight: strategic withdrawal by informed traders in the face of aggressive, price-insensitive order flow.

19 In Appendix  A.4.2 with partial awareness, we define naive individual investors’ trading aggressiveness as their marginal responsiveness to private information:
𝑇𝐴𝑛 ∶=

𝛼𝑛
𝑜

𝜆𝑛 + 𝜉𝑛
.

Fig.  A.13 demonstrates how 𝑇𝐴𝑛 evolves with price impact awareness (𝜅). As 𝜅 increases from 0 to 1, 𝑇𝐴𝑛 monotonically decreases across all tested parameter 
regimes. This numerical validation directly supports that neglected price impacts (𝜅 → 0) drive naive individual investors’ excessive trading intensity.
20 We finally go back to the discussion on the conditions outlined in Proposition  5. The institutional investor’s advantage lies in possessing superior information, 

while the disadvantage stems from naive individual investors committing to aggressive trading. On the one hand, when the noise-to-signal ratio is sufficiently 
large, the institutional investor’s information advantage becomes negligible, and the benefits of this advantage cannot offset the conservative trading behavior. 
On the other hand, when the noise-trading volume is sufficiently large, the price impact becomes more pronounced, further amplifying the disadvantage.
21 In that episode, a large number of retail investors—coordinating on online platforms such as Reddit’s r/WallStreetBets—aggressively purchased shares 

and call options of GameStop. Their trading behavior largely disregarded price impact or fundamental valuation and was driven by momentum and collective 
sentiment. This behavior significantly pushed up the price of GME in a short period. Several institutional investors, particularly short sellers with fundamental 
bearish views on GME, were forced to cover their positions at large losses. Despite having superior information about the firm’s fundamentals, these institutions 
could not withstand the extreme and persistent price movements driven by retail demand. As a result, some reduced their positions or exited entirely to avoid 
further losses—echoing the mechanism in our model, where informed traders rationally ‘‘shrink’’ in response to aggressive uninformed activity.
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Fig. 5. The effect of noise-trading volume on difference between trading profits: The left graph in each panel represents the difference between 
trading profits of the institutional investor (𝛱1) and the sophisticated individual investors (𝛱𝑠), while right graph displays the difference between 
trading profits of the institutional investor (𝛱1) and the naive individual investors (𝛱𝑛). The parameter values are set to 𝑚 = 4, 𝑛 = 10, 𝜌 = 2, and 
𝜏𝑢 ranges from 0.001 to 0.1. For other parameters, we set 𝜏𝜃 = 100 and 𝜏𝜖 = 1 (satisfying the parameter condition (𝑛2−4𝑛+2)𝜏𝜖∕𝜏𝜃 < 1 in Proposition 
5) in Panel a and 𝜏𝜃 = 25 and 𝜏𝜖 = 5 (which are used in Han and Yang (2013) and do not meet the parameter condition (𝑛2 − 4𝑛+ 2)𝜏𝜖∕𝜏𝜃 < 1 in 
Proposition  5) in Panel b.

6. Coexistence of institutional, sophisticated, and naive investors

This section numerically investigates the scenario in which all three types of investors participate in the market. Specifically, 
we examine the effects of increasing the sophistication level of individual investors, represented by a higher value of 𝑚, which 
corresponds to more naive individual investors switching to sophisticated individual investors. We have two main findings: (i) the 
main results in Section 4.3 (Propositions  3) and Section 5.1 (Proposition  5) remain robust under this setting; (ii) naive individual 
investors impose negative externalities on other market participants.

First, Fig.  5 illustrates the effect of 𝜏𝑢 on trading profits under two scenarios: when 𝜏𝜖∕𝜏𝜃 is sufficiently small (Panel a) and 
when it is relatively moderate (Panel b). From Fig.  5, we observe that the conclusions of Propositions  3 and 5 extend to the model 
incorporating all three types of investors simultaneously. On the one hand, the institutional investor consistently achieves higher 
trading profits than the sophisticated individual investors, as demonstrated by the left figures in both Panel a and Panel b. On 
the other hand, when 𝜏𝑢 is sufficiently small, the naive individual investor’s trading profits exceed (or fall below) those of the 
institutional investor depending on whether the condition (𝑛2−4𝑛+2)𝜏𝜖∕𝜏𝜃 < 1 holds (or fails), as shown in the right graph of Panel 
a (Panel b). These findings confirm that the main results in Sections 4.3 and 5.1 remain robust.
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Fig. 6. The effect of the level of sophistication on trading profits: This figure plots how the sophistication level 𝑚 affects the trading profits of 
the institutional investor (𝛱1), the sophisticated individual investors (𝛱𝑠), and the naive individual investors (𝛱𝑛). We set 𝑛 = 10 in the left 
panel, while 𝑛 = 30 in the right panel. The other parameter values are set to 𝜏𝜃 = 100, 𝜏𝑢 = 0.001, 𝜏𝜖 = 1, and 𝜌 = 2. The parameter condition 
(𝑛2 − 4𝑛 + 2)𝜏𝜖∕𝜏𝜃 < 1 holds in the left panel but fails in the right panel.

Second, when naive individual investors perceive themselves as price-takers, they believe that their trading does not influence 
the equilibrium price. As a result, they tend to buy more upon receiving positive signals and sell more upon receiving negative 
signals. While this behavior may enable naive individual investors to outperform the institutional investor in certain scenarios, their 
aggressive trading—driven by irrationality—imposes negative externalities on all market participants. This is evidenced by Fig.  6, 
which shows that the expected trading profits of all investors increase as the level of sophistication 𝑚 rises.22 Furthermore, while 
the number of sophisticated individual investors 𝑚 affects the magnitude of the trading profits for all three types of investors, it 
does not alter their relative ordering. In other words, the conclusions regarding the ranking of trading profits among the three types 
of investors remain robust with respect to changes in 𝑚. In Appendix  A.3, we do more simulations to test the robustness.

7. Discussion

7.1. Empirical evidence on individual investors with price impact

Research indicates that individual investors exhibit herding behavior, resulting in correlated buying and selling activities that 
can significantly affect asset prices. Barber et al. (2009) document that trades executed by individual investors at a major discount 
broker and a large retail brokerage are systematically correlated, with their net monthly purchases and sales displaying persistence 
over time. This pattern suggests that individual investors tend to remain net buyers (or net sellers) of the same stocks in subsequent 
months. Jackson (2003) provides further evidence using Australian data from 1991–2002, showing that the trading behavior of 
individual investors was coordinated rather than independent. Expanding on these findings, Barber et al. (2008) analyze eighteen 
years of high-frequency U.S. stock transaction data and demonstrate that retail trading influences prices over both short and long 
horizons, particularly for smaller stocks. More recently, studies have focused on the surge in retail investor participation. Eaton 
et al. (2022) examine Robinhood, an online retail brokerage, and identify a substantial cohort of momentum traders whose herding 
behavior exacerbates inventory risks and impairs liquidity in stocks with high retail investor interest. A growing body of literature 
further supports the notion that retail trades exert a substantial price impact (Kaniel et al., 2008; Hvidkjaer, 2008; Foucault 
et al., 2011; Kelley and Tetlock, 2013; Peress and Schmidt, 2020).

7.2. Empirical relevance for the main theoretical results

Our paper offers three main sets of testable predictions. The first prediction concerns the irrational behavior of investors who are 
unable to accurately estimate the impact of their trades on market prices. In Section 5.2, we argue that naive individual investors, 
due to their inability to accurately assess their price impact, irrationally increase their trading volumes, leading to overtrading. 
Existing literature primarily attributes overtrading to investor overconfidence (Abramov and Brown, 1997; Odean, 1999; Chuang 
and Susmel, 2011). However, it is important to note that several factors prevent individual investors from accurately estimating the 

22 Fig.  6 illustrates how the trading profits of the three types of investors vary with the level of sophistication 𝑚 in the market. Here, we consider two cases: 
𝑛 = 10 (where 𝑚 ranges from 0 to 9) and 𝑛 = 30 (where 𝑚 ranges from 0 to 29). In Appendix  A.1, we illustrate that our conclusions are robust.
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price impact of their trading activities. These include cognitive biases such as overconfidence, as well as a lack of understanding 
of market depth due to insufficient trading experience or financial knowledge, or being influenced by high-frequency trading and 
algorithmic strategies. Specifically, ordinary investors often lack the ability to discern the market behavior of high-frequency and 
algorithmic traders, whose presence tends to amplify price volatility.

The second prediction concerns the performance of institutional investors and sophisticated individual investors. Section 4.3 
demonstrates that the institutional investor can consistently outperform sophisticated individual investors. This result provides a 
new perspective to explain the phenomena identified by Shapira and Venezia (2001) and Hu et al. (2024). The former find that, 
compared to independent accounts (which correspond to sophisticated individual investors in our study, who make independent 
investment decisions), professionally managed accounts (managed by professional fund managers, corresponding to institutional 
investors in our paper) tend to exhibit slightly higher profitability. The latter find that institutions employing more complex 
strategies (reflecting the information advantage in our study) generally outperform retail investors relying on simpler strategies. 
In our paper, we categorize the factors influencing investor performance into informational effects and risk effects. We find that 
the institutional investor’s informational advantage consistently dominates the risk effects, leading to his superior performance over 
rational individual investors.

The third prediction compares the performance between institutional investors and naive individual investors. Proposition  5 
demonstrates that, under certain market conditions, naive individual investors can outperform institutional investors despite the 
latter’s information advantage. This result offers a potential explanation for the findings of Zhong (2022), which suggests that 
institutional investors do not consistently outperform the market. An implication of our model is that this underperformance may 
stem not from a lack of skill but rather from high levels of market noise and the relatively low precision of private signals.

7.3. Implications on overtrading policies

Current financial trading regulations primarily aim to enhance investor protection by mitigating risks associated with improper 
financial advice, information asymmetry, and hidden fees. For instance, FINRA rules explicitly prohibit brokers from generating 
commissions through excessive or unnecessary trading, a practice commonly referred to as ‘‘churning’’. Similarly, MiFID II has 
strengthened regulatory requirements for investment advisors, mandating that they account for an investor’s risk tolerance, 
investment objectives, and financial situation when providing advice.

A key insight from our findings is that irrational overtrading by investors imposes negative externalities on all market participants, 
as discussed in Section 6. Therefore, regulatory efforts should extend beyond investor protection against poor advice to address the 
broader market consequences of excessive trading.

Building on these insights, we propose two targeted interventions: First, trading platforms could be required to implement 
behavioral nudges—such as real-time indicators of overtrading externalities (e.g., liquidity depletion metrics)—alongside investor 
education programs aimed at mitigating cognitive biases among inexperienced traders. Second, regulators could introduce dynamic 
circuit breakers, triggered by order flow imbalances, to temporarily pause trading during episodes indicative of herd behavior. 
These suggest that existing investor protection and market stability regulations should expand beyond financial advisory practices 
to incorporate direct measures aimed at curbing irrational trading behavior, thereby mitigating systemic risks and promoting overall 
market efficiency.

8. Conclusion

We explore a noisy imperfectly competitive market in which an institutional investor possesses all the information in the 
market, while individual investors hold only a single piece of asymmetric information alongside a public signal. Among these 
individual investors, some internalize their price impact and are categorized as ‘‘sophisticated’’, whereas others perceive themselves 
as price-takers and are labeled ‘‘naive’’. We establish the conditions under which the institutional investor can or cannot outperform 
individual investors in terms of trading profits. Our findings reveal that the institutional investor consistently outperforms 
sophisticated individual investors under all market conditions. However, when both the noise-trading volume and the noise-to-signal 
ratio reach sufficiently high levels, the institutional investor fails to outperform naive individual investors. This occurs because naive 
individual investors, who neglect their price impact, tend to trade aggressively, compelling the institutional investor to reduce his 
own trading aggressiveness.
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Appendix A. Further discussions

This appendix provides additional discussions on alternative performance measures beyond expected trading profits, as well as 
an examination of the robustness of the results presented in the main body of this paper.
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A.1. Other measures for performance

In the main text, we compare the trading profits of the institutional investor with those of sophisticated and naive individual 
investors. Here, we extend the discussion by examining two additional performance measures: certainty equivalent and standardized 
expected trading profit (adjusted for information precision).

We begin by analyzing the certainty equivalent, which serves as a risk-adjusted measure of investor performance. The certainty 
equivalent for a strategic investor is given by 

𝐶𝐸 ∶= −1
𝜌
log (−E[− exp{−𝜌𝑥(𝜃 − 𝑝)}])

= −1
𝜌
log (−E[E(− exp{−𝜌𝑥(𝜃 − 𝑝)}| )]) , (A.1)

where  denotes the information set of the investor including the price 𝑝, 𝑥 = E[𝜃| ]−𝑝
𝜆+𝜉  represents the optimal equilibrium demand, 

𝜉 = 𝜌Var[𝜃| ] is the risk-aversion-adjusted conditional variance, and the second equality follows from the law of total expectation. 
Then it follows from (A.1) that
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where the penultimate equality follows from the law of total variance. The certainty equivalent of a price-taking investor can be 
similarly derived by directly setting 𝜆 = 0.

We observe that 𝐶𝐸 is a monotonic transformation of 𝜆+𝜉∕2(𝜆+𝜉)2 [Var(𝜃− 𝑝)−Var(𝜃| )]. Consequently, it is reasonable to compare the 
measure 𝜆+𝜉∕2(𝜆+𝜉)2 [Var(𝜃 − 𝑝) − Var(𝜃| )] across different investors. Indeed, our numerical analysis confirms that all results in the paper 
qualitatively hold under this new risk-adjusted measure 𝜆+𝜉∕2(𝜆+𝜉)2 [Var(𝜃 − 𝑝) − Var(𝜃| )].23

Furthermore, recognizing that information acquisition is costly and that signal precision varies across investors, we standardize 
the expected trading profit by information precision. Specifically, we define the standardized trading profits as

𝛱̃1 ∶= 𝛱1∕
√

𝜏𝜃 + 𝑛𝜏𝜖 , 𝛱̃𝑠 ∶= 𝛱𝑠∕
√

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑠, 𝛱̃𝑛 ∶= 𝛱𝑛∕
√

𝜏𝜃 + 2𝜏𝜖 + 𝛩𝑛,

replacing the original trading profits 𝛱1, 𝛱𝑠, and 𝛱𝑛. Our analysis demonstrates that the conclusions derived from expected trading 
profits in the baseline model remain robust even when this standardized measure, which accounts for information acquisition costs, 
is applied. This is evidenced by the results shown in Figs.  A.1, A.2, and A.3.

A.2. Notes for Fig.  2

In Fig.  2, the institutional investor consistently exhibits a stronger information effect due to his information advantage, as 
reflected by the fact that the ratio 𝛹𝑠∕𝛹1 is always lower than 1. Moreover, the relative strength of the institutional investor’s 
information effect intensifies as 𝜏𝑢 increases. Intuitively, higher 𝜏𝑢 makes price information more informative. However, since the 
information effect is characterized by information efficiency, when 𝜏𝑢 is relatively low, the price becomes excessively noisy. To 
summarize, as illustrated in Fig.  A.4, Var(𝜃 − 𝑝) → ∞ and Var[𝜃|𝑦1, 𝑦𝑖, 𝑝] remains bounded as 𝜏𝑢 → 0. Given that Var[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛]
is a constant, both Var(𝜃 − 𝑝) − Var[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛] and Var(𝜃 − 𝑝) − Var[𝜃|𝑦1, 𝑦𝑖, 𝑝] are dominated by Var(𝜃 − 𝑝) as 𝜏𝑢 → 0, leading 
to 𝛹𝑠∕𝛹1 → 1 as 𝜏𝑢 → 0. For the case 𝜏𝑢 → ∞, we know that Var(𝜃 − 𝑝), Var[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛] and Var[𝜃|𝑦1, 𝑦𝑖, 𝑝] are all bounded. 
Combining this with the relation Var[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛] < Var[𝜃|𝑦1, 𝑦𝑖, 𝑝], we conclude that 𝛹𝑠∕𝛹1 is bounded above by one as 𝜏𝑢 → ∞.

23 The numerical results are available upon request from the authors.
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Fig. A.1. Robustness check under standardized trading profits for 𝜏𝑢: Corresponding to Figs.  5, the left graph in each panel represents the 
difference between the standardized trading profits of the institutional investor (𝛱̃1) and those of the sophisticated individual investors (𝛱̃𝑠) 
in general model, while the right graph displays the difference between the standardized trading profits of the institutional investor (𝛱̃1) and 
those of the naive individual investors (𝛱̃𝑛). The parameter values are set as 𝑚 = 4, 𝑛 = 10, 𝜌 = 2, and 𝜏𝑢 ranges from 0.001 to 0.1. For other 
parameters, in Panel a, we set 𝜏𝜃 = 100, and 𝜏𝜖 = 1, which satisfies the parameter condition (𝑛2 − 4𝑛 + 2)𝜏𝜖∕𝜏𝜃 < 1 in Proposition  5. In Panel b, 
we set 𝜏𝜃 = 25 and 𝜏𝜖 = 5, which does not satisfy the parameter condition (𝑛2 − 4𝑛 + 2)𝜏𝜖∕𝜏𝜃 < 1 in Proposition  5.

A.3. Robustness check

Here, we demonstrate the robustness of the conclusions presented in the main body of the paper. As shown in Figs.  A.5 and A.6, 
our findings regarding the ranking of trading profits among the three types of investors remain consistent and robust with respect 
to variations in 𝑚 in the model where all three types of investors coexist.

Figs.  A.5 and A.6 illustrate how the trading profits of the three types of investors are influenced by the level of sophistication 
𝑚 in the market. In both figures, we examine two scenarios: 𝑛 = 10 and 𝑛 = 30. For 𝑛 = 10, 𝑚 ranges from 0 to 9, and for 𝑛 = 30, 
𝑚 ranges from 0 to 29. Additionally, Fig.  A.5 considers two cases for 𝜏𝑢 (1 and 100), while Fig.  A.6 considers three cases for 𝜏𝑢
(0.001, 1, 100). These cases are presented in Panels a and b of Figs.  A.5 and A.6, with Panel a corresponding to 𝑛 = 10 and Panel 
b to 𝑛 = 30. The only difference between Figs.  A.5 and A.6 lies in the parameter values: we set 𝜏𝜃 = 100 and 𝜏𝜖 = 1 in Fig.  A.5, 
whereas we use 𝜏𝜃 = 25 and 𝜏𝜖 = 5 in Fig.  A.6. By comparing the two figures, we observe that the level of sophistication 𝑚 affects 
only the magnitude of the trading profits for the three types of investors, not their relative ordering. In other words, our conclusions 
regarding the ranking of trading profits among the three types of investors remain robust with respect to changes in 𝑚.
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Fig. A.2. Robustness check under standardized trading profits for 𝑚 (𝜏𝜃 = 100, 𝜏𝜖 = 1, 𝜌 = 2): Corresponding to Figs.  6 and A.5, Panel a shows 
the effect of 𝑚 on the standardized trading profits of the three types of investors for 𝑛 = 10, and the values of 𝜏𝑢 from left to right are set as 
0.001, 1, and 100. Panel b displays the effect of 𝑚 on the standardized trading profits of the three types of investors for 𝑛 = 30, and the values of 
𝜏𝑢 from left to right are set as 0.001, 1, and 100 in the general model.

A.4. Two extensions: heterogeneous signal precisions and partial awareness of price impact

In this section, we consider a more general model in which (i) the private signal precision of the two types of individual investors 
are heterogeneous, and (ii) naive individual investors exhibit partial awareness of their own price impact.

Formally, the private signal for sophisticated individual investor 𝑖 is given by 𝑦𝑖 = 𝜃 + 𝜖𝑖, where 𝜖𝑖 ∼ 𝑁(0, 1∕𝜏𝑠𝜖 ), while the 
private signal for naive individual investors 𝑗 is given by 𝑦𝑗 = 𝜃 + 𝜖𝑗 , where 𝜖𝑗 ∼ 𝑁(0, 1∕𝜏𝑛𝜖 ). Here, the signal precisions satisfy 
𝜏𝑠𝜖 ≥ 𝜏𝑛𝜖 ≥ 𝜏1𝜖 > 0. We define the price impact of naive individual investors as 𝜆𝑛 = 𝜅𝜆𝑠, where 𝜅 ∈ [0, 1] represents the degree 
of naive investors’ awareness of their price impact. Specifically, the further 𝜅 deviates from 1, the less adequately these investors 
perceive their influence on prices. Notably, when 𝜏𝑠𝜖 = 𝜏𝑛𝜖 = 𝜏1𝜖  and 𝜅 = 0, the general model reduces to the model presented in 
Section 6.

Applying the same method as in the system (16)–(20), we can get the following equilibrium system of the general model 
comprising all three types of investors:

𝛾 = 𝑛
[

1
𝜆1 + 𝜉1

+
𝑚(1 − 𝛽𝑠)
𝜆𝑠 + 𝜉𝑠

+
(𝑛 − 𝑚 − 1)(1 − 𝛽𝑛)

𝜆𝑛 + 𝜉𝑛

]−1
,

𝜋1 =
𝛾
𝑛

[

𝜏1𝜖
(𝜏𝜃 + 𝜏1𝜖 + 𝑚𝜏𝑠𝜖 + (𝑛 − 𝑚 − 1)𝜏𝑛𝜖 )(𝜆1 + 𝜉1)

+
𝑚𝛼𝑠1

𝜆𝑠 + 𝜉𝑠
+

(𝑛 − 𝑚 − 1)𝛼𝑛1
𝜆𝑛 + 𝜉𝑛

]

,

𝜋𝑠 =
𝛾
𝑛

[

𝜏𝑠𝜖
(𝜏𝜃 + 𝜏1𝜖 + 𝑚𝜏𝑠𝜖 + (𝑛 − 𝑚 − 1)𝜏𝑛𝜖 )(𝜆1 + 𝜉1)

+
𝛼𝑠𝑜

𝜆𝑠 + 𝜉𝑠

]

,

𝜋𝑛 =
𝛾
[

𝜏𝑛𝜖
1 𝑠 𝑛

+
𝛼𝑛𝑜

]

,

𝑛 (𝜏𝜃 + 𝜏𝜖 + 𝑚𝜏𝜖 + (𝑛 − 𝑚 − 1)𝜏𝜖 )(𝜆1 + 𝜉1) 𝜆𝑛 + 𝜉𝑛
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Fig. A.3. Robustness check under standardized trading profits for 𝑚 (𝜏𝜃 = 25, 𝜏𝜖 = 5, 𝜌 = 2): Corresponding to Figs.  A.6, Panel a shows the effect 
of 𝑚 on the standardized trading profits of the three types of investors for 𝑛 = 10, and the values of 𝜏𝑢 from left to right are set as 0.001, 1, and 
100. Panel b displays the effect of 𝑚 on the standardized trading profits of the three types of investors for 𝑛 = 30, and the values of 𝜏𝑢 from left 
to right are set as 0.001, 1, and 100 in the general model.

Fig. A.4. The impact of noise-trading volume on ratio of 1∕Var(𝜃 − 𝑝) and the conditional variance of 𝜃: The left panel illustrates how noise-
trading volume 𝜏𝑢 (ranging from 0.01 to 100) affects 1∕Var(𝜃 − 𝑝), while the right panel displays how it affects investor 𝑖’s conditional variance 
Var[𝜃|𝑦1, 𝑦𝑖, 𝑝], in which the two horizontal dotted lines represent investor 1’s conditional variance Var[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛] under the two parameter 
conditions, respectively. The remaining parameters are fixed at 𝜌 = 2 and 𝑛 = 10.
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Fig. A.5. Robustness check for 𝑚 (𝜏𝜃 = 100, 𝜏𝜖 = 1, 𝜌 = 2): Panel a illustrates the effect of 𝑚 on the trading profits of the three types of investors 
for 𝑛 = 10, and the value of 𝜏𝑢 from left to right are 1 and 100. Panel b demonstrates the effect of 𝑚 on the trading profits of the three types of 
investors for 𝑛 = 30, and the values of 𝜏𝑢 from left to right are 1 and 100.

𝜆1 =
[

𝑚(1 − 𝛽𝑠)
𝜆𝑠 + 𝜉𝑠

+
(𝑛 − 𝑚 − 1)(1 − 𝛽𝑛)

𝜆𝑛 + 𝜉𝑛

]−1
,

𝜆𝑠 =
[

1
𝜆1 + 𝜉1

+
(𝑚 − 1)(1 − 𝛽𝑠)

𝜆𝑠 + 𝜉𝑠
+

(𝑛 − 𝑚 − 1)(1 − 𝛽𝑛)
𝜆𝑛 + 𝜉𝑛

]−1
,

𝜆𝑛 = 𝜅𝜆𝑠,

where

𝛼𝑠1 =
𝜏1𝜖 − 𝛩𝑠 𝜋1

𝜋𝑠(𝑚−1)+𝜋𝑛(𝑛−𝑚−1)

𝜏𝜃 + 𝜏1𝜖 + 𝜏𝑠𝜖 + 𝛩𝑠
,

𝛼𝑠𝑜 =
𝜏𝑠𝜖 − 𝛩𝑠𝑣𝑠

𝜏𝜃 + 𝜏1𝜖 + 𝜏𝑠𝜖 + 𝛩𝑠
,

𝛽𝑠 = 𝛩𝑠

𝜏𝜃 + 𝜏1𝜖 + 𝜏𝑠𝜖 + 𝛩𝑠
1

𝜋𝑠(𝑚 − 1) + 𝜋𝑛(𝑛 − 𝑚 − 1)
,

𝛼𝑛1 =
𝜏1𝜖 − 𝛩𝑛 𝜋1

𝜋𝑠𝑚+𝜋𝑛(𝑛−𝑚−2)
1 𝑛 𝑛

,

𝜏𝜃 + 𝜏𝜖 + 𝜏𝜖 + 𝛩
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Fig. A.6. Robustness check for 𝑚 (𝜏𝜃 = 25, 𝜏𝜖 = 5, 𝜌 = 2): Panel a illustrates the effect of 𝑚 on the trading profits of the three types of investors 
for 𝑛 = 10, and the value of 𝜏𝑢 from left to right are 0.001, 1, and 100. Panel b demonstrates the effect of 𝑚 on the trading profits of the three 
types of investors for 𝑛 = 30, and the values of 𝜏𝑢 from left to right are 0.001, 1 and 100.

𝛼𝑛𝑜 =
𝜏𝑛𝜖 − 𝛩𝑛𝑞𝑛

𝜏𝜃 + 𝜏1𝜖 + 𝜏𝑛𝜖 + 𝛩𝑛
,

𝛽𝑛 = 𝛩𝑛

𝜏𝜃 + 𝜏1𝜖 + 𝜏𝑛𝜖 + 𝛩𝑛
1

𝜋𝑠𝑚 + 𝜋𝑛(𝑛 − 𝑚 − 2)
,

and 𝑣𝑠, 𝑞𝑠, 𝑧𝑠, 𝛩𝑠, 𝑣𝑛, 𝑞𝑛, 𝑧𝑛 and 𝛩𝑛 is defined by (6)–(13), respectively.
Next, we examine two special cases—(i) individual investors’ private signals are partially asymmetric, and (ii) naive individual 

investors have partial awareness of their price impact—within the general model comprising all three types of investors, in order 
to demonstrate the robustness of our main theoretical results.

A.4.1. Partial information asymmetry
We first examine the case where the private signals of individual investors are asymmetric, i.e., we set 𝜏𝑠𝜖 > 𝜏𝑛𝜖 > 𝜏1𝜖  and 𝜅 = 0 in 

the equilibrium system of the general model. Figs.  A.7, A.8, and A.9 numerically illustrate the results, from which we can conclude 
that the main findings in Section 6 are robust for this extension.

A.4.2. Partial awareness of price impact
To verify the main findings in Section 6 regarding the partial awareness of naive individual investors about their own price 

impact, we set 𝜏𝑠𝜖 = 𝜏𝑛𝜖 = 𝜏1𝜖  and 𝜅 > 0 in the equilibrium system of the general model, and present the simulation results in Figs. 
A.10, A.11, and A.12.

Furthermore, our interpretation of institutional outperformance in Proposition  5 hinges on naive investors’ heightened trading 
aggressiveness due to their neglected price impact. To formalize this mechanism, we quantify trading aggressiveness through the 
coefficient on private signals 𝑦𝑗 in naive investors’ demand functions:

𝑇𝐴𝑛 ∶=
𝛼𝑛𝑜 ,
𝜆𝑛 + 𝜉𝑛
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Fig. A.7. Robustness check under heterogeneous signal precision for 𝜏𝑢: Corresponding to Fig.  5, the left graph in each panel represents, when 
information is asymmetric, the difference between the trading profits of the institutional investor (𝛱1) and those of the sophisticated individual 
investors (𝛱𝑠), while the right graph depicts the difference between the trading profits of the institutional investor (𝛱1) and those of the naive 
individual investors (𝛱𝑛). The parameter values are set as 𝑚 = 4, 𝑛 = 10, 𝜅 = 0, 𝜌 = 2, and 𝜏𝑢 ranges from 0.001 to 0.1. For other parameters, 
in Panel a, we set 𝜏𝜃 = 100, 𝜏𝑠𝜖 = 1, 𝜏𝑛𝜖 = 0.5, and 𝜏1𝜖 = 0.2, which approaches the parameter condition (𝑛2 − 4𝑛 + 2)𝜏𝜖∕𝜏𝜃 < 1 in Proposition  5. In 
Panel b, we set 𝜏𝜃 = 25, 𝜏𝑠𝜖 = 5, 𝜏𝑛𝜖 = 2.5, and 𝜏1𝜖 = 0.5, which deviates from the parameter condition (𝑛2 − 4𝑛 + 2)𝜏𝜖∕𝜏𝜃 < 1 in Proposition  5.

where 𝑇𝐴𝑛 measures the marginal responsiveness to private information. Fig.  A.13 systematically demonstrates that 𝑇𝐴𝑛 monotoni-
cally decreases as naive individual investors’ price impact awareness (𝜅) increases across parameter regimes. This inverse relationship 
corroborates our earlier interpretation: When 𝜅 → 0 (full neglect of price impact), maximal trading intensity amplifies naive 
investors’ performance degradation, while heightened awareness (𝜅 > 0) rationally moderates their order flow, thereby reducing 
the institutional advantage documented in Proposition  5.

Appendix B. Proofs

B.1. Proof of Proposition  1

Note that while 𝜉1 = 𝜌Var[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛, 𝑝] = 𝜌Var[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛] is a constant determined solely by exogenous parameters (see 
(14)), 𝜉𝑠 additionally depends on the endogenous parameter 𝑧𝑠 (see (9) and (15) by setting 𝑚 = 𝑛−1). To highlight this dependence, 
in the following proof, we will occasionally express 𝜉  as 𝜉 (𝑧 ).
𝑠 𝑠 𝑠
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Fig. A.8. Robustness check under heterogeneous signal precision for 𝑚 (𝜏𝜃 = 100, 𝜏𝑠𝜖 = 1, 𝜏𝑛𝜖 = 0.5, 𝜏1𝜖 = 0.2, 𝜅 = 0, 𝜌 = 2): Corresponding to Figs. 
6 and A.5, Panel a illustrates, when information is asymmetric, the effect of 𝑚 on the trading profits of the three types of investors for 𝑛 = 10, 
and the values of 𝜏𝑢 from left to right are 0.001, 1, and 100. Panel b demonstrates the effect of 𝑚 on the trading profits of the three types of 
investors for 𝑛 = 30, and the values of 𝜏𝑢 from left to right are 0.001, 1, and 100.

From (24) and (25), we have
1
𝜆𝑠

=
(𝑛 − 2)(1 − 𝛽𝑠)

𝜆𝑠 + 𝜉𝑠
+ 1

[

(𝑛−1)(1−𝛽𝑠)
𝜆𝑠+𝜉𝑠

]−1
+ 𝜉1

,

which is equivalent to 
[

(2𝑛 − 3)(1 − 𝛽𝑠) − 1
]

𝜆2𝑠 +
[

(𝑛 − 2)(1 − 𝛽𝑠)[(𝑛 − 1)(1 − 𝛽𝑠)𝜉1 + 𝜉𝑠] + (𝑛 − 1)(1 − 𝛽𝑠)(𝜉𝑠 − 𝜉1) − 2𝜉𝑠
]

𝜆𝑠

−
[

(𝑛 − 1)(1 − 𝛽𝑠)𝜉𝑠𝜉1 + 𝜉2𝑠
]

= 0. (B.1)

Note that the discriminant of the quadratic Equation (B.1) is non-negative:
[

(𝑛 − 2)(1 − 𝛽𝑠)((𝑛 − 1)(1 − 𝛽𝑠)𝜉1 + 𝜉𝑠) + (𝑛 − 1)(1 − 𝛽𝑠)(𝜉𝑠 − 𝜉1) − 2𝜉𝑠
]2 + 4

[

(2𝑛 − 3)(1 − 𝛽𝑠) − 1
] [

(𝑛 − 1)(1 − 𝛽𝑠)𝜉𝑠𝜉1 + 𝜉2𝑠
]

= [(𝑛 − 2)(1 − 𝛽𝑠)((𝑛 − 1)(1 − 𝛽𝑠)𝜉1 + 𝜉𝑠) + (𝑛 − 1)(1 − 𝛽𝑠)(𝜉𝑠 − 𝜉1)]2 + 4(𝑛 − 1)2(1 − 𝛽𝑠)2𝜉𝑠𝜉1 ≥ 0.

We restrict 𝛽𝑠 ∈ (0, 1) to ensure that 𝜆1 remains positive and well-defined. We first claim that (B.1) has a positive root 𝜆𝑠 if and 
only if (2𝑛−3)(1− 𝛽𝑠) − 1 > 0. When (2𝑛−3)(1− 𝛽𝑠) − 1 > 0, (B.1) has a unique positive root, whether the coefficient of 𝜆𝑠 is positive 
or negative. Conversely, if (2𝑛 − 3)(1 − 𝛽𝑠) − 1 ≤ 0, i.e., 1 − 𝛽𝑠 ≤ 1

2𝑛−3 , the coefficient of 𝜆𝑠 in (B.1) equals
(𝑛 − 1)(1 − 𝛽𝑠)[(𝑛 − 2)(1 − 𝛽𝑠) − 1]𝜉1 + [(2𝑛 − 3)(1 − 𝛽𝑠) − 2]𝜉𝑠,

which is negative, implying that (B.1) has no positive root. Denote the threshold value

𝛽+ ∶= 2𝑛 − 4
2𝑛 − 3

.

Hence, to establish the existence of equilibrium, it suffices to restrict 𝛽𝑠 to the interval (0, 𝛽+).
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Fig. A.9. Robustness check under heterogeneous signal precision for 𝑚 (𝜏𝜃 = 25, 𝜏𝑠𝜖 = 5, 𝜏𝑛𝜖 = 2.5, 𝜏1𝜖 = 0.5, 𝜅 = 0, 𝜌 = 2): Corresponding to Figs. 
A.6, Panel a illustrates, when information is asymmetric, the effect of 𝑚 on the trading profits of the three types of investors for 𝑛 = 10, and the 
values of 𝜏𝑢 from left to right are 0.001, 1, and 100. Panel b demonstrates the effect of 𝑚 on the trading profits of the three types of investors for 
𝑛 = 30, and the values of 𝜏𝑢 from left to right are 0.001, 1, and 100.

The proof proceeds as follows: we first express all relevant variables –𝜆1, 𝜆𝑠, 𝜉𝑠, 𝑧𝑠, and 𝜋𝑠– as functions of the variable 𝛽𝑠. These 
expressions are then substituted into the equation that 𝛽𝑠 satisfies. Finally, we solve the resulting equation, which depends solely 
on the variable 𝛽𝑠, to demonstrate the existence of the equilibrium.

In the first step, we aim to express 𝑧𝑠 as a function of the variable 𝛽𝑠. For a fixed value 𝛽𝑠 ∈ (0, 𝛽+), we can uniquely determine 
𝜆𝑠 = 𝜆𝑠(𝛽𝑠; 𝑧𝑠) using (B.1), as discussed above. Note that 𝜆𝑠(𝛽𝑠; 𝑧𝑠) depends on 𝑧𝑠 because 𝜉𝑠 itself is a function of 𝑧𝑠. Subsequently, 
we can get 

𝜆1 = 𝜆1(𝛽𝑠; 𝑧𝑠) =
[

(𝑛 − 1)(1 − 𝛽𝑠)
𝜆𝑠(𝛽𝑠; 𝑧𝑠) + 𝜉𝑠(𝑧𝑠)

]−1
(B.2)

by (24). Substituting 𝜆𝑠 = 𝜆𝑠(𝛽𝑠; 𝑧𝑠) and 𝜆1 = 𝜆1(𝛽𝑠; 𝑧𝑠) into (21), we obtain 

𝛾 = 𝛾(𝛽𝑠; 𝑧𝑠) = 𝑛
[

1 +
(𝑛 − 1)(1 − 𝛽𝑠)

]−1
. (B.3)
𝜆1(𝛽𝑠; 𝑧𝑠) + 𝜉1 𝜆𝑠(𝛽𝑠; 𝑧𝑠) + 𝜉𝑠(𝑧𝑠)
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Fig. A.10. Robustness check under partial awareness for 𝜏𝑢: Corresponding to Fig.  5, the left graph in each panel represents, when naive investors 
have partial awareness of price impact, the difference between trading profits of the institutional investor (𝛱1) and those of the sophisticated 
individual investors (𝛱𝑠), while the left graph depicts the difference between the trading profits of the institutional investor (𝛱1) and those of 
the naive individual investors (𝛱𝑛). The parameter values are set as 𝑚 = 4, 𝑛 = 10, 𝜅 = 0.2, 𝜌 = 2, and 𝜏𝑢 ranges from 0.001 to 0.1. For other 
parameters, in Panel a, we set 𝜏𝜃 = 100, 𝜏𝑠𝜖 = 𝜏𝑛𝜖 = 𝜏1𝜖 = 1, which approaches the parameter condition (𝑛2 − 4𝑛 + 2)𝜏𝜖∕𝜏𝜃 < 1 in Proposition  5. In 
Panel b, we set 𝜏𝜃 = 25 and 𝜏𝑠𝜖 = 𝜏𝑛𝜖 = 𝜏1𝜖 = 5, which deviates from the parameter condition (𝑛2 − 4𝑛 + 2)𝜏𝜖∕𝜏𝜃 < 1 in Proposition  5.

From (23) and (26), and using the definition 𝑧𝑠 = 𝛾
(𝑛−2)𝜋𝑠

, we have 

𝑛
𝑛 − 2

= 𝑧𝑠

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1(𝛽𝑠; 𝑧𝑠) + 𝜉1)

+

𝜏𝜖−
1

1
𝜏𝜖

+
(𝑛−2)𝑧2𝑠

𝜏𝑢
𝜏𝜃+2𝜏𝜖+

1

1
(𝑛−2)𝜏𝜖

+
𝑧2𝑠
𝜏𝑢

𝜆𝑠(𝛽𝑠; 𝑧𝑠) + 𝜉𝑠(𝑧𝑠)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (B.4)

Observe that {𝜆𝑠(𝛽𝑠; 𝑧𝑠)} is uniformly bounded over 𝑧𝑠 ∈ (0,∞), as (B.4) depends on 𝑧𝑠 only through the terms 𝜉1 and 𝜉𝑠, where 𝜉1
is a constant and 𝜉𝑠 satisfies the relation

𝜌 ≤ 𝜉𝑠(𝑧𝑠) ≤
𝜌

𝜏𝜃 + 𝑛𝜏𝜖 𝜏𝜃 + 2𝜏𝜖
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Fig. A.11. Robustness check under partial awareness for 𝑚 (𝜏𝜃 = 100, 𝜏𝑠𝜖 = 𝜏𝑛𝜖 = 𝜏1𝜖 = 1, 𝜅 = 0.2, 𝜌 = 2): Corresponding to Figs.  6 and A.5, Panel 
a illustrates, when naive investors have partial awareness of price impact, the effect of 𝑚 on the trading profits of the three types of investors 
for 𝑛 = 10, and the values of 𝜏𝑢 from left to right are 0.001, 1, and 100. Panel b demonstrates the effect of 𝑚 on the trading profits of the three 
types of investors for 𝑛 = 30, and the values of 𝜏𝑢 from left to right are 0.001, 1, and 100.

for any 𝑧𝑠 > 0 (see Eqs.  (2) and (15)). Consequently, {𝜆1(𝛽𝑠; 𝑧𝑠)} is also uniformly bounded over 𝑧𝑠 ∈ (0,∞). This uniform 
boundedness implies that the term on the right-hand side of (B.4) tends to infinity as 𝑧𝑠 → ∞ and to zero as 𝑧𝑠 → 0. Therefore, 
there exists a solution, denoted as 𝑧𝑠(𝛽𝑠), which is a function of the variable 𝛽𝑠, to Eq.  (B.4). From this solution, we immediately 
obtain the values of 𝜆1(𝛽𝑠; 𝑧𝑠(𝛽𝑠)) and 𝜆𝑠(𝛽𝑠; 𝑧𝑠(𝛽𝑠)), and subsequently, the value of 𝛾(𝛽𝑠, 𝑧𝑠(𝛽𝑠)) from (B.3). Additionally, we derive 
the value of 𝜋𝑠(𝛽𝑠) using the relation 𝜋𝑠(𝛽𝑠) = 𝛾(𝛽𝑠 ,𝑧𝑠(𝛽𝑠))

(𝑛−2)𝑧𝑠(𝛽𝑠)
, where 𝜋𝑠(𝛽𝑠) and 𝑧𝑠(𝛽𝑠) are functions of 𝛽𝑠. Substituting 𝑧𝑠(𝛽𝑠) and 𝜋𝑠(𝛽𝑠)

into the expression for 𝛽𝑠, we obtain an equation involving only 𝛽𝑠 (along with other exogenous parameters): 

𝛽𝑠 =

1
1

(𝑛−2)𝜏𝜖
+ (𝑧𝑠 (𝛽𝑠 ))2

𝜏𝑢

1
(𝑛−2)𝜋𝑠(𝛽𝑠)

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ (𝑧𝑠 (𝛽𝑠 ))2
𝜏𝑢

. (B.5)

To establish the existence of equilibrium, it suffices to show that Eq.  (B.5) has a positive root within (0, 𝛽+). The proof relies 
on the intermediate value theorem by showing that the limit of the right-hand side of (B.5) exceeds (respectively, falls below) the 
left-hand side as 𝛽𝑠 → 0 (respectively, 𝛽𝑠 → 𝛽+). First, consider the limit as 𝛽𝑠 → 0. In this case, (B.1) simplifies to

(2𝑛 − 4)𝜆2𝑠 +
[

(𝑛 − 2)[(𝑛 − 1)𝜉1 + 𝜉𝑠] + (𝑛 − 1)(𝜉𝑠 − 𝜉1) − 2𝜉𝑠
]

𝜆𝑠 −
[

(𝑛 − 1)𝜉𝑠𝜉1 + 𝜉2𝑠
]

= 0,

which implies that 𝜆𝑠, and consequently 𝜆1, 𝛾, 𝑧𝑠, and 𝜋𝑠 are bounded and bounded away from zero. This follows from (24), (21), 
(B.4), and the relation 𝜋𝑠 = 𝛾∕(𝑧𝑠(𝑛 − 2)). Thus, the limit inferior of the right-hand side of (B.5) is strictly positive as 𝛽𝑠 → 0. Next, 
consider the limit of 𝛽𝑠 → 𝛽+ = 2𝑛−4

2𝑛−3 . We first show that 𝜆𝑠 → ∞ by contradiction. Otherwise, if {𝜆𝑠} were bounded, then from 
(B.1), we would have

𝜆𝑠 →
𝑛−1
2𝑛−3 𝜉𝑠𝜉1 + 𝜉2𝑠

𝑛−2
(

𝑛−1 𝜉 + 𝜉
)

+ 𝑛−1 (𝜉 − 𝜉 ) − 2𝜉
< 0,
2𝑛−3 2𝑛−3 1 𝑠 2𝑛−3 𝑠 1 𝑠
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Fig. A.12. Robustness check under partial awareness or 𝑚 (𝜏𝜃 = 25, 𝜏𝑠𝜖 = 𝜏𝑛𝜖 = 𝜏1𝜖 = 5, 𝜅 = 0.2, 𝜌 = 2): Corresponding to Fig.  A.6, Panel a illustrates, 
when naive investors have partial awareness of price impact, the effect of 𝑚 on the trading profits of the three types of investors for 𝑛 = 10, and 
the values of 𝜏𝑢 from left to right are 0.001, 1, and 100. Panel b demonstrates the effect of 𝑚 on the trading profits of the three types of investors 
for 𝑛 = 30, and the values of 𝜏𝑢 from left to right are 0.001, 1, and 100.

Fig. A.13. The impact of naive individual investor’s awareness of price impact 𝜅 on their trading aggressiveness 𝑇𝐴𝑛: The left and right panels 
illustrate the effects of varying 𝜅 (ranging from 0 to 1) on the trading intensity (𝑇𝐴𝑛) of naive individual investors. The distinction between the 
panels lies in their parameter configurations: the left panel is parameterized with 𝜏𝜃 = 100 and 𝜏1𝜖 = 𝜏𝑠𝜖 = 𝜏𝑛𝜖 = 1, while the right panel adopts 
𝜏𝜃 = 25 and 𝜏1𝜖 = 𝜏𝑠𝜖 = 𝜏𝑛𝜖 = 5, systematically contrasting high-signal-quality and low-signal-quality market environments. The remaining parameter 
values are 𝜏𝑢 = 1, 𝜌 = 2, 𝑚 = 4, and 𝑛 = 10.
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which contradicts the fact that 𝜆𝑠 is a positive solution to (B.1). Therefore, 𝜆𝑠 → ∞. We can further show that 𝜆1 → ∞ by (24), 
𝛾 → ∞ by (21), and 𝑧𝑠 → ∞ by (B.4). Additionally, from (23), (21) and (24), we derive

𝜋𝑠 =

𝜏𝜖
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

+ 𝛼𝑠𝑜
𝜆𝑠+𝜉𝑠

1
𝜆1+𝜉1

+ (𝑛−1)(1−𝛽𝑠)
𝜆𝑠+𝜉𝑠

=

𝜏𝜖
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

+ 𝛼𝑠𝑜
𝜆1(𝑛−1)(1−𝛽𝑠)

1
𝜆1+𝜉1

+ 1
𝜆1

=

𝜏𝜖𝜆1
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

+ 𝛼𝑠𝑜
(𝑛−1)(1−𝛽𝑠)

𝜆1
𝜆1+𝜉1

+ 1
, (B.6)

which implies

𝜋𝑠 →
1
2

(

𝜏𝜖
𝜏𝜃 + 𝑛𝜏𝜖

+
𝜏𝜖

(𝜏𝜃 + 2𝜏𝜖)(𝑛 − 1)(1 − 𝛽𝑠)

)

,

where we use the limit 𝛼𝑠𝑜 →
𝜏𝜖

𝜏𝜃+2𝜏𝜖
. Consequently, the right-hand side of (B.5) tends to zero as 𝛽𝑠 → 𝛽+. By the intermediate value 

theorem, Eq. (B.5) must have a positive root 𝛽𝑠 ∈ (0, 𝛽+). With this value of 𝛽𝑠, we can determine 𝜆𝑠, 𝜆1, 𝛾, 𝑧𝑠, and 𝜋𝑠. Finally, from 
(22), we obtain

𝜋1 =
𝛾
𝑛

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1 + 𝜉1)

+

(𝑛 − 1)

𝜏𝜖−
1

1
𝜏𝜖

+
(𝑛−2)𝑧2𝑠

𝜏𝑢

𝜋1
𝜋𝑠

𝜏𝜃+2𝜏𝜖+
1

1
(𝑛−2)𝜏𝜖

+
𝑧2𝑠
𝜏𝑢

𝜆𝑠 + 𝜉𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

With the value of 𝜋1, we get the value of 𝜋1:

𝜋1 =

𝛾
𝑛

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜏𝜖
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

+ (𝑛−1)𝜏𝜖

(𝜆𝑠+𝜉𝑠)

⎛

⎜

⎜

⎜

⎝

𝜏𝜃+2𝜏𝜖+
1

1
(𝑛−2)𝜏𝜖

+
𝑧2𝑠
𝜏𝑢

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

1 + (𝑛−1)(𝑛−2)𝑧𝑠
𝑛

1
1
𝜏𝜖

+
(𝑛−2)𝑧2𝑠

𝜏𝑢
𝜏𝜃+2𝜏𝜖+

1
1

(𝑛−2)𝜏𝜖
+
𝑧2𝑠
𝜏𝑢

𝜆𝑠+𝜉𝑠

.

The proof is completed. □

B.2. Proof of Proposition  2

Proof of (i). From (24) and (25), we have

𝜆𝑠 =
[

𝑛 − 2
𝑛 − 1

1
𝜆1

+ 1
𝜆1 + 𝜉1

]−1
,

which implies that 𝜆1 > 𝜆𝑠 if and only if
𝑛 − 2
𝑛 − 1

1
𝜆1

+ 1
𝜆1 + 𝜉1

> 1
𝜆1

.

This inequality simplifies to
(𝑛 − 2)𝜆1 > 𝜉1.

Observe that (𝑛 − 2)𝜆1 > 𝜉1 holds if and only if
(𝑛 − 2)(𝜆𝑠 + 𝜉𝑠) > (𝑛 − 1)(1 − 𝛽𝑠)𝜉1 ⇔ (𝑛 − 2)(𝜆𝑠∕𝜉𝑠 + 1) > (𝑛 − 1)(1 − 𝛽𝑠)𝜉1∕𝜉𝑠

⇔
𝜆𝑠
𝜉𝑠

>
(𝑛 − 1)(1 − 𝛽𝑠)

𝑛 − 2
𝜉1
𝜉𝑠

− 1.

This inequality is satisfied if
(𝑛 − 1)(1 − 𝛽𝑠)

𝑛 − 2
𝜉1
𝜉𝑠

− 1 ≤ 0,

or if (𝑛−1)(1−𝛽𝑠)𝑛−2
𝜉1
𝜉𝑠

− 1 > 0 and (from (B.1))

[

(2𝑛 − 3)(1 − 𝛽𝑠) − 1
]

[

(𝑛 − 1)(1 − 𝛽𝑠) 𝜉1 − 1
]2

−
[

(𝑛 − 1)(1 − 𝛽𝑠)
𝜉1 + 1

]

𝑛 − 2 𝜉𝑠 𝜉𝑠
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+
[

(𝑛 − 2)(1 − 𝛽𝑠)
(

(𝑛 − 1)(1 − 𝛽𝑠)
𝜉1
𝜉𝑠

+ 1
)

+ (𝑛 − 1)(1 − 𝛽𝑠)
(

1 −
𝜉1
𝜉𝑠

)

− 2
] [

(𝑛 − 1)(1 − 𝛽𝑠)
𝑛 − 2

𝜉1
𝜉𝑠

− 1
]

< 0.

After simplification, this inequality reduces to

(𝑛 − 1)3𝜉21 (1 − 𝛽𝑠) −
[

(𝑛 − 1)𝜉21 + (𝑛 − 2)(𝑛 − 1)2𝜉𝑠𝜉1 + (𝑛 − 2)(𝑛 − 1)𝜉21
]

< 0,

or equivalently,

1 − 𝛽𝑠 <
(𝑛 − 1)𝜉21 + (𝑛 − 1)(𝑛 − 2)𝜉𝑠𝜉1

(𝑛 − 1)2𝜉21
=

𝜉1 + (𝑛 − 2)𝜉𝑠
(𝑛 − 1)𝜉1

.

In summary, we have shown that 𝜆1 > 𝜆𝑠 if and only if

1 − 𝛽𝑠 <
𝜉1 + (𝑛 − 2)𝜉𝑠
(𝑛 − 1)𝜉1

=
1 + (𝑛 − 2)𝜉𝑠∕𝜉1

𝑛 − 1
.

Note that 𝜉1 ≤ 𝜉𝑠 (see Eqs. (14) and (15)), which implies that 𝜆1 > 𝜆𝑠.

Proof of (ii). From (24), we have 

𝜆1 + 𝜉1 =
𝜆𝑠 + 𝜉𝑠

(𝑛 − 1)(1 − 𝛽𝑠)
+ 𝜉1. (B.7)

This implies that when (𝑛−1)(1− 𝛽𝑠) ≤ 1, it holds that 𝜆1 + 𝜉1 ≥ 𝜆𝑠 + 𝜉𝑠. Next, suppose (𝑛−1)(1− 𝛽𝑠) > 1. In this case, 𝜆1 + 𝜉1 < 𝜆𝑠 + 𝜉𝑠
if and only if 

𝜆𝑠 + 𝜉𝑠 >
𝜉1

1 − 1
(𝑛−1)(1−𝛽𝑠)

. (B.8)

Note that (B.1) can be rewritten as

[(2𝑛 − 3)(1 − 𝛽𝑠) − 1](𝜆𝑠 + 𝜉𝑠)2 −
[

(𝑛 − 1)(1 − 𝛽𝑠)𝜉1 + (2𝑛 − 3)(1 − 𝛽𝑠)𝜉𝑠 − (𝑛 − 1)(𝑛 − 2)(1 − 𝛽𝑠)2𝜉1
]

(𝜆𝑠 + 𝜉𝑠)

− (𝑛 − 1)(𝑛 − 2)(1 − 𝛽𝑠)2𝜉𝑠𝜉1 = 0. (B.9)

From (B.9), we deduce that (B.8) holds if and only if

[(2𝑛 − 3)(1 − 𝛽𝑠) − 1]
⎛

⎜

⎜

⎝

𝜉1
1 − 1

(𝑛−1)(1−𝛽𝑠)

⎞

⎟

⎟

⎠

2

− (𝑛 − 1)(𝑛 − 2)(1 − 𝛽𝑠)2𝜉𝑠𝜉1

−
[

(𝑛 − 1)(1 − 𝛽𝑠)𝜉1 + (2𝑛 − 3)(1 − 𝛽𝑠)𝜉𝑠 − (𝑛 − 1)(𝑛 − 2)(1 − 𝛽𝑠)2𝜉1
] 𝜉1
1 − 1

(𝑛−1)(1−𝛽𝑠)

< 0.

After simplification, this inequality reduces to

(𝑛 − 1)(𝑛 − 2)(1 − 𝛽𝑠)2𝜉1 −
[

(𝑛 − 1)(𝑛 − 2)(1 − 𝛽𝑠)2 − 𝛽𝑠
]

𝜉𝑠 < 0.

The proof is completed. □

B.3. Proof of Proposition  3

Proof of (i). To begin with, from (28)–(31), we observe that the institutional investor beats the sophisticated individual investors if 
and only if 

𝜆𝑠 + 𝜉𝑠
𝜆1 + 𝜉1

>
𝛹𝑠
𝛹1

. (B.10)

From (B.4), we have
𝑛

𝑛 − 2
≤ 𝑧𝑠

[

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)𝜉1

+
𝜏𝜖

(𝜏𝜃 + 2𝜏𝜖)𝜉𝑠(𝑧𝑠)

]

≤ 𝑧𝑠

[

𝜏𝜖
(𝜏𝜃 + 𝑛𝜏𝜖)𝜉1

+
𝜏𝜖(𝜏𝜃 + 𝑛𝜏𝜖)
(𝜏𝜃 + 2𝜏𝜖)𝜌

]

. (B.11)

Combining this with the expression for 𝛼𝑠𝑜 (see (26)), we deduce that

𝛼𝑠𝑜 →
𝜏𝜖

𝜏𝜃 + 2𝜏𝜖
as 𝜏𝑢 → 0. Consequently, from (21) and (23), we obtain

𝜋𝑠 =

𝜏𝜖
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

+ 𝛼𝑠𝑜
𝜆𝑠+𝜉𝑠

1 + (𝑛−1)(1−𝛽𝑠)
> min

{

𝜏𝜖
𝜏𝜃 + 𝑛𝜏𝜖

,
𝜏𝜖

2(𝜏𝜃 + 2𝜏𝜖)(𝑛 − 1)

}

> 0

𝜆1+𝜉1 𝜆𝑠+𝜉𝑠
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for all sufficiently small 𝜏𝑢. As a result, it follows from the expression of 𝛽𝑠 that 𝛽𝑠 → 0 as 𝜏𝑢 → 0. Moreover, from (21), we have

𝛾 ≥ 𝑛
(

1
𝜉1

+ 𝑛 − 1
𝜉𝑠

)−1
≥ 𝑛

[

𝜏𝜃 + 𝑛𝜏𝜖
𝜌

+
(𝑛 − 1)(𝜏𝜃 + 𝑛𝜏𝜖)

𝜌

]−1
.

This implies that Var(𝜃 − 𝑝) ≥ 𝛾2∕𝜏𝑢 → ∞ as 𝜏𝑢 → 0. Thus, the term on the right-hand side of (B.10) tends to one as 𝜏𝑢 → 0.
Since we have shown that 𝛽𝑠 → 0, it follows from (B.9) and (24) that {𝜆𝑠 + 𝜉𝑠} and {𝜆1 + 𝜉1} are bounded and bounded away 

from zero. Part (ii) of Proposition  2 indicates that the limit of (𝜆𝑠 + 𝜉𝑠)∕(𝜆1 + 𝜉1) is greater than one, as 1
𝜏𝜃+𝑛𝜏𝜖

< 1
𝜏𝜃+2𝜏𝜖

, noting that 
𝜉𝑠 →

𝜌
𝜏𝜃+2𝜏𝜖

 as 𝜏𝑢 → 0 and 𝜉1 = 𝜌
𝜏𝜃+𝑛𝜏𝜖

. Part (i) thus follows from (B.10).

Proof of (ii). We analyze the term on the left-hand side of (B.10). First, we show by contradiction that (2𝑛 − 3)(1 − 𝛽𝑠) → 1, 
i.e., 𝛽𝑠 → 𝛽+ = 2𝑛−4

2𝑛−3  as 𝜏𝑢 → ∞. If this were not the case, it would follow from (B.1) that {𝜆𝑠} is bounded, and consequently, 
{𝜆1} is also bounded and bounded away from zero by (24). This would imply that {𝑧𝑠} is bounded by (B.4). As a result, 𝛼𝑠𝑜 → 0, 
and 𝛽𝑠 − 𝜏𝜖

𝜋𝑠(𝜏𝜃+𝑛𝜏𝜖 )
→ 0 by (26) and (27), leading to

𝛽𝑠 −

𝜆1
𝜆1+𝜉1

+ 1
𝜆1

𝜆1+𝜉1

→ 0

by (B.6). This creates a contradiction, as we have established that the equilibrium parameter 𝛽𝑠 is less than one, i.e., 𝛽𝑠 ∈ (0, 𝛽+). 
Therefore, 𝛽𝑠 → 𝛽+ as 𝜏𝑢 → ∞.

As shown in Proposition  1, we can further show by contradiction that 𝜆𝑠 → ∞, and 𝜆1 → ∞. Considering these limits, along with 
(B.5) and (B.6), we conclude that (𝑛 − 2)2𝑧2𝑠∕𝜏𝑢 converges to a finite positive number, denoted as 𝑑, which satisfies the following 
equation:

𝛽+ =

1
1
𝜏𝜖

+ 𝑑
𝑛−2

𝜏𝜃 + 2𝜏𝜖 +
𝑛−2

1
𝜏𝜖

+ 𝑑
𝑛−2

2

𝜏𝜖
𝜏𝜃+𝑛𝜏𝜖

+ 1
(𝑛−1)(1−𝛽+)

𝜏𝜖−
1

1
𝜏𝜖

+ 𝑑
𝑛−2

𝜏𝜃+2𝜏𝜖+
𝑛−2

1
𝜏𝜖

+ 𝑑
𝑛−2

.

From this and the relation 𝛽+ = 2𝑛−4
2𝑛−3 , we get 

𝑑 = 1
𝜏𝜖

(𝑛 − 1)2(𝜏𝜃 + 𝑛𝜏𝜖)
(3𝑛 − 4)𝜏𝜃 + (2𝑛2 − 𝑛 − 2)𝜏𝜖

. (B.12)

Next, from (B.7), we have
𝜆𝑠 + 𝜉𝑠
𝜆1 + 𝜉1

=
𝜆𝑠 + 𝜉𝑠

𝜆𝑠+𝜉𝑠
(𝑛−1)(1−𝛽𝑠) + 𝜉1

= 1
1

(𝑛−1)(1−𝛽𝑠) +
𝜉1

𝜆𝑠+𝜉𝑠

→ (𝑛 − 1)(1 − 𝛽+) (B.13)

= 𝑛 − 1
2𝑛 − 3

,

since we have shown that 𝜆𝑠 → ∞ and 𝛽𝑠 → 𝛽+ as 𝜏𝑢 → ∞. Given that the limit of the term on the left-hand side of (B.10) is a 
constant independent of any other parameters, the proof is completed by the following two steps.

Step one: Here, we demonstrate that the limit of the term on the right-hand side of (B.10) as 𝜏𝑢 → ∞ strictly decreases with 𝜏𝜃 . 
To this end, we first derive the limits of 𝜋𝑠 and 𝜋1 as 𝜏𝑢 → ∞. We have already established that 𝛽𝑠 → 𝛽+, (𝑛 − 2)2𝑧2𝑠∕𝜏𝑢 → 𝑑, and 
𝜆1 → ∞. From (B.6) and (B.12), it follows that

𝜋𝑠 =

𝜏𝜖𝜆1
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

+

𝜏𝜖−
1

1
𝜏𝜖

+
(𝑛−2)𝑧2𝑠

𝜏𝑢
𝜏𝜃+2𝜏𝜖+

1
1

(𝑛−2)𝜏𝜖
+
𝑧2𝑠
𝜏𝑢

(𝑛−1)(1−𝛽𝑠)
𝜆1

𝜆1+𝜉1
+ 1

→
1
2

⎡

⎢

⎢

⎢

⎢

⎣

𝜏𝜖
𝜏𝜃 + 𝑛𝜏𝜖

+ 2𝑛 − 3
𝑛 − 1

𝜏𝜖 −
1

1
𝜏𝜖

+ 𝑑
(𝑛−2)

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ 𝑑
(𝑛−2)2

⎤

⎥

⎥

⎥

⎥

⎦

=∶ 𝜋̂𝑜 < ∞. (B.14)

We also have

𝜋1
(22),(21)

=

𝜏𝜖
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

+
(𝑛−1)𝛼𝑠1
𝜆𝑠+𝜉𝑠

1
𝜆1+𝜉1

+ (𝑛−1)(1−𝛽𝑠)
𝜆𝑠+𝜉𝑠

(24)
=

𝜏𝜖𝜆1
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

+
𝛼𝑠1

1−𝛽𝑠

𝜆1
𝜆1+𝜉1

+ 1

(26)
=

𝜏𝜖𝜆1
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

+

𝜏𝜖−
1

1
𝜏𝜖

+
(𝑛−2)𝑧2𝑠

𝜏𝑢

𝜋1
𝜋𝑠

𝜏𝜃+2𝜏𝜖+
1

1
(𝑛−2)𝜏𝜖

+
𝑧2𝑠
𝜏𝑢

1−𝛽𝑠

𝜆1
𝜆1+𝜉1

+ 1
,
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which leads to

𝜋1 =

𝜏𝜖𝜆1
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

( 𝜆1
𝜆1+𝜉1

+1
) + 𝜏𝜖

(1−𝛽𝑠)

⎛

⎜

⎜

⎜

⎝

𝜏𝜃+2𝜏𝜖+
1

1
(𝑛−2)𝜏𝜖

+
𝑧2𝑠
𝜏𝑢

⎞

⎟

⎟

⎟

⎠

( 𝜆1
𝜆1+𝜉1

+1
)

1

𝜋𝑠

(

1
𝜏𝜖

+ (𝑛−2)𝑧2𝑠
𝜏𝑢

)

(1−𝛽𝑠)

⎛

⎜

⎜

⎜

⎝

𝜏𝜃+2𝜏𝜖+
1

1
(𝑛−2)𝜏𝜖

+
𝑧2𝑠
𝜏𝑢

⎞

⎟

⎟

⎟

⎠

( 𝜆1
𝜆1+𝜉1

+1
)

+ 1

=

𝜏𝜖𝜆1
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

⎛

⎜

⎜

⎝

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ 𝑧2𝑠
𝜏𝑢

⎞

⎟

⎟

⎠

+ 𝜏𝜖
1−𝛽𝑠

1

𝜋𝑠

(

1
𝜏𝜖

+ (𝑛−2)𝑧2𝑠
𝜏𝑢

)

(1−𝛽𝑠)
+
⎛

⎜

⎜

⎝

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ 𝑧2𝑠
𝜏𝑢

⎞

⎟

⎟

⎠

(

𝜆1
𝜆1+𝜉1

+ 1
)

→

𝜏𝜖
𝜏𝜃+𝑛𝜏𝜖

(

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ 𝑑
(𝑛−2)2

)

+ 𝜏𝜖(2𝑛 − 3)

2(2𝑛−3)
1
𝜏𝜖

+ 𝑑
𝑛−2

⎡

⎢

⎢

⎢

⎣

𝜏𝜖
𝜏𝜃+𝑛𝜏𝜖

+ 2𝑛−3
𝑛−1

𝜏𝜖−
1

1
𝜏𝜖

+ 𝑑
𝑛−2

𝜏𝜃+2𝜏𝜖+
1

1
(𝑛−2)𝜏𝜖

+ 𝑑
(𝑛−2)2

⎤

⎥

⎥

⎥

⎦

−1

+ 2

(

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ 𝑑
(𝑛−2)2

)

=∶ 𝜋̂1 < ∞, (B.15)

where the limit follows from 𝛽𝑠 → 𝛽+, (𝑛 − 2)2𝑧2𝑠∕𝜏𝑢 → 𝑑, 𝜆1 → ∞, and the limit of 𝜋𝑠 given by (B.14).
Next, we show that the limit of the term on the right-hand side of (B.10) as 𝜏𝑢 → ∞ decreases with 𝜏𝜃 . Using the limits of 𝜋𝑠

and 𝜋1 and (𝑛 − 2)2𝑧2𝑠∕𝜏𝑢 from (B.14), (B.15), and (B.12), we obtain

Var(𝜃 − 𝑝) =
(𝜋1 + (𝑛 − 1)𝜋𝑠 − 1)2

𝜏𝜃
+

𝜋2
1 + (𝑛 − 1)𝜋2

𝑠

𝜏𝜖
+

𝛾2

𝜏𝑢

→
(𝜋̂1 + (𝑛 − 1)𝜋̂𝑠 − 1)2

𝜏𝜃
+

𝜋̂2
1 + (𝑛 − 1)𝜋̂2

𝑠

𝜏𝜖
+ 𝜋̂2

𝑠𝑑 =∶ 𝑉1(𝜏𝜃), (B.16)

Var[𝜃|𝑦1, 𝑦𝑖, 𝑝] =
1

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ 𝑧2𝑠
𝜏𝑢

→
1

𝜏𝜃 + 2𝜏𝜖 +
1

1
(𝑛−2)𝜏𝜖

+ 𝑑
(𝑛−2)2

=∶ 𝑉2(𝜏𝜃), (B.17)

Var[𝜃|𝑦1,… , 𝑦𝑛, 𝑝] = Var[𝜃|𝑦1,… , 𝑦𝑛] =
1

𝜏𝜃 + 𝑛𝜏𝜖
=∶ 𝑉3(𝜏𝜃) (B.18)

as 𝜏𝑢 → ∞. Hence, the term on the right-hand side of (B.10)
Var(𝜃 − 𝑝) − Var[𝜃|𝑦1, 𝑦𝑖, 𝑝]

Var(𝜃 − 𝑝) − Var[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛]
→

𝑉1(𝜏𝜃) − 𝑉2(𝜏𝜃)
𝑉1(𝜏𝜃) − 𝑉3(𝜏𝜃)

.

Using (B.16), (B.17), (B.18), and the definition of 𝑑 (see (B.12)), with some calculations we can show that
𝜕
(

𝑉1(𝜏𝜃 )−𝑉2(𝜏𝜃 )
𝑉1(𝜏𝜃 )−𝑉3(𝜏𝜃 )

)

𝜕𝜏𝜃
< 0

is equivalent to

−
4𝜏𝜖(𝑛 − 1)3(𝑛 − 2)2

(2𝑛 − 3)(8𝜏𝜃 + 6𝜏𝜖 − 11𝑛𝜏𝜃 − 5𝑛𝜏𝜖 + 4𝑛2𝜏𝜃 − 2𝑛2𝜏𝜖 + 2𝑛3𝜏𝜖)2
< 0,

which is indeed true. This completes the proof of this step.
Step two: Here, we demonstrate that the limit of the term on the right-hand side of (B.10) as 𝜏𝑢 → ∞ satisfies the relation (B.10) 

when 𝜏𝜃 → 0. First, we derive the following expressions
Var(𝜃 − 𝑝) − Var[𝜃|𝑦1, 𝑦𝑖, 𝑝] = E[(𝜃 − 𝑝)(E[𝜃|𝑦1, 𝑦𝑖, 𝑝] − 𝑝)]

= E

{ [

(1 − 𝜋1 − (𝑛 − 1)𝜋𝑠)𝜃 − 𝜋1𝜖1 − 𝜋𝑠
𝑛
∑

𝑖=2
𝜖𝑖 − 𝛾𝑢

]

×
[

(𝛼𝑠𝑜 + 𝛼𝑠1 − (1 − 𝛽𝑠)(𝜋1 + (𝑛 − 1)𝜋𝑠))𝜃 + (𝛼𝑠1 − (1 − 𝛽𝑠)𝜋1)𝜖1 + (𝛼𝑠𝑜 − (1 − 𝛽𝑠)𝜋𝑠)𝜖𝑖 − 𝜋𝑠(1 − 𝛽𝑠)
𝑛
∑

𝜖𝑗 − (1 − 𝛽𝑠)𝛾𝑢
]

}

𝑗∉{1,𝑖}
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=
[

(1 − 𝜋1 − (𝑛 − 1)𝜋𝑠)(𝛼𝑠𝑜 + 𝛼𝑠1 − (1 − 𝛽𝑠)(𝜋1 + (𝑛 − 1)𝜋𝑠))
]

∕𝜏𝜃 + (1 − 𝛽𝑠)𝛾2∕𝜏𝑢

+
[

−𝜋1(𝛼𝑠1 − (1 − 𝛽𝑠)𝜋1) − 𝜋𝑠(𝛼𝑠𝑜 − (1 − 𝛽𝑠)𝜋𝑠) + 𝜋2
𝑠 (1 − 𝛽𝑠)(𝑛 − 2)

]

∕𝜏𝜖 , (B.19)

and

Var(𝜃 − 𝑝) − Var[𝜃|𝑦1, 𝑦2,… , 𝑦𝑛] = E[(𝜃 − 𝑝)(E[𝜃|𝑦1,… , 𝑦𝑛] − 𝑝)]

= E

{ [

(1 − 𝜋1 − (𝑛 − 1)𝜋𝑠)𝜃 − 𝜋1𝜖1 − 𝜋𝑠
𝑛
∑

𝑖=2
𝜖𝑖 − 𝛾𝑢

][

(𝑛𝑏𝜏𝜖 − (𝜋1 + (𝑛 − 1)𝜋𝑠))𝜃 + (𝑏𝜏𝜖 − 𝜋1)𝜖1 + (𝑏𝜏𝜖 − 𝜋𝑠)
𝑛
∑

𝑖=2
𝜖𝑖 − 𝛾𝑢

] }

=
[

(1 − 𝜋1 − (𝑛 − 1)𝜋𝑠)(𝑛𝑏𝜏𝜖 − (𝜋1 + (𝑛 − 1)𝜋𝑠))
]

∕𝜏𝜃 −
[

𝜋1(𝑏𝜏𝜖 − 𝜋1) + 𝜋𝑠(𝑏𝜏𝜖 − 𝜋𝑠)(𝑛 − 1)
]

∕𝜏𝜖 + 𝛾2∕𝜏𝑢, (B.20)

where 𝑏 = 1
𝜏𝜃+𝑛𝜏𝜖

. Next, applying (B.13), (B.19), and (B.20), we find that

𝜆𝑠 + 𝜉𝑠
𝜆1 + 𝜉1

E[(𝜃 − 𝑝)(E[𝜃|𝑦1,… , 𝑦𝑛, 𝑝] − 𝑝)] − E[(𝜃 − 𝑝)(E[𝜃|𝑦1, 𝑦𝑖, 𝑝] − 𝑝)]

tends to

(𝑛 − 1)(1 − 𝛽+)
{

[

(1 − 𝜋̂1 − (𝑛 − 1)𝜋̂𝑠)(𝑛𝑏𝜏𝜖 − (𝜋̂1 + (𝑛 − 1)𝜋̂𝑠))
]

∕𝜏𝜃 −
[

𝜋̂1(𝑏𝜏𝜖 − 𝜋̂1) + 𝜋̂𝑠(𝑏𝜏𝜖 − 𝜋̂𝑠)(𝑛 − 1)
]

∕𝜏𝜖 + 𝑑𝜋̂2
𝑠

}

−
{

[

(1 − 𝜋̂1 − (𝑛 − 1)𝜋̂𝑠)(𝛼̂𝑠𝑜 + 𝛼̂𝑠1 − (1 − 𝛽+)(𝜋̂1 + (𝑛 − 1)𝜋̂𝑠))
]

∕𝜏𝜃

+
[

−𝜋̂1(𝛼̂𝑠1 − (1 − 𝛽+)𝜋̂1) − 𝜋̂𝑠(𝛼̂𝑠𝑜 − (1 − 𝛽+)𝜋̂𝑠) + 𝜋̂2
𝑠 (1 − 𝛽+)(𝑛 − 2)

]

∕𝜏𝜖 + (1 − 𝛽+)𝑑𝜋̂2
𝑠

}

∝ (1 − 𝜋̂1 − (𝑛 − 1)𝜋̂𝑠)[𝑛(𝑛 − 1)(1 − 𝛽+)𝑏𝜏𝜖 − 𝛼̂𝑠1 − 𝛼̂𝑠𝑜 − (𝜋̂1 + (𝑛 − 1)𝜋̂𝑠)(1 − 𝛽+)(𝑛 − 2)]𝜏𝜖
− [𝜋̂2

𝑠 (1 − 𝛽+)(𝑛 − 2) + 𝜋̂1((𝑛 − 1)(1 − 𝛽+)(𝑏𝜏𝜖 − 𝜋̂1) − (𝛼̂𝑠1 − (1 − 𝛽+)𝜋̂1))

+ 𝜋̂𝑠((𝑛 − 1)2(1 − 𝛽+)(𝑏𝜏𝜖 − 𝜋̂𝑠) − (𝛼̂𝑠𝑜 − (1 − 𝛽+)𝜋̂𝑠))]𝜏𝜃 + (1 − 𝛽+)(𝑛 − 2)𝑑𝜋̂2
𝑠 𝜏𝜖𝜏𝜃 . (B.21)

We define 𝑑, 𝜋̃𝑠, 𝜋̃1, 𝛼̃𝑠𝑜 , and 𝛼̃𝑠1 as the limits of 𝑑, 𝜋̂𝑠, 𝜋̂1, 𝛼̂𝑠0, and 𝛼̂𝑠1 as 𝜏𝜃 → 0. Then, the term in (B.21) tends to
(

𝑛(𝑛 − 1)(1 − 𝛽+)𝑏𝜏𝜖 − 𝛼̃𝑠1 − 𝛼̃𝑠𝑜
)

+ (𝜋̃1 + (𝑛 − 1)𝜋̃𝑠)2(1 − 𝛽+)(𝑛 − 2)

− (𝜋̃1 + (𝑛 − 1)𝜋̃𝑠)(𝑛(𝑛 − 1)(1 − 𝛽+)𝑏𝜏𝜖 − 𝛼̃𝑠1 − 𝛼̃𝑠𝑜) − (𝜋̃1 + (𝑛 − 1)𝜋̃𝑠)(1 − 𝛽+)(𝑛 − 2)

=
(

𝑛(𝑛 − 1)(1 − 𝛽+)𝑏𝜏𝜖 − 𝛼̃𝑠1 − 𝛼̃𝑠𝑜
)

[1 − (𝜋̃1 + (𝑛 − 1)𝜋̃𝑠)] − (1 − 𝛽+)(𝑛 − 2)(𝜋̃1 + (𝑛 − 1)𝜋̃𝑠)[1 − (𝜋̃1 + (𝑛 − 1)𝜋̃𝑠)]. (B.22)

From (22), (23), (21), and (24), we have

𝜋1 + (𝑛 − 1)𝜋𝑠 =
1

𝜆1
𝜆1+𝜉1

+ 1

[

𝜏𝜖𝜆1
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1 + 𝜉1)

+
(𝑛 − 1)𝛼𝑠1

(𝑛 − 1)(1 − 𝛽𝑠)
+

(𝑛 − 1)𝜏𝜖𝜆1
(𝜏𝜃 + 𝑛𝜏𝜖)(𝜆1 + 𝜉1)

+
(𝑛 − 1)𝛼𝑠𝑜

(𝑛 − 1)(1 − 𝛽𝑠)

]

,

which implies

𝜋̃1 + (𝑛 − 1)𝜋̃𝑠 =
1
2

(

1
𝑛
+

𝛼̃𝑠1
1 − 𝛽+

+ 𝑛 − 1
𝑛

+
𝛼̃𝑠𝑜

1 − 𝛽+

)

= 1
2

(

1 +
𝛼̃𝑠𝑜 + 𝛼̃𝑠1
1 − 𝛽+

)

.

Therefore, (B.22) can be rewritten as

(1 − (𝜋̃1 + (𝑛 − 1)𝜋̃𝑠))
[

(𝑛 − 1)(1 − 𝛽+) − (𝛼̃𝑠1 + 𝛼̃𝑠𝑜) −
1
2
(𝑛 − 2)((1 − 𝛽+) + (𝛼̃𝑠1 + 𝛼̃𝑠𝑜))

]

= (1 − (𝜋̃1 + (𝑛 − 1)𝜋̃𝑠))
[ 𝑛
2
(1 − 𝛽+) − 𝑛

2
(𝛼̃𝑠1 + 𝛼̃𝑠𝑜)

]

= 𝑛(1 − 𝛽+)(1 − (𝜋̃1 + (𝑛 − 1)𝜋̃𝑠))2 ≥ 0,

which implies that the term in (B.22) is non-negative. The proof is completed. □

B.4. Proof of Proposition  4

The proof follows a similar approach to that of Proposition  1; therefore, we present only the proof outline and omit the detailed 
derivations.

To establish the existence of equilibrium, it suffices to demonstrate that the system of equilibrium equations admits a positive 
solution. Following the structure of (B.2), (B.3), and (B.4), and utilizing the relation 𝑧𝑛 = 𝛾

(𝑛−2)𝜋𝑛
, we first express the key variables 

𝜆1, 𝛾, 𝑧𝑛, and 𝜋𝑛 as functions of the variable 𝛽𝑛. Substituting these expressions into the equilibrium condition for 𝛽𝑛 (analogous to 
(B.5)), we obtain a univariate equation in 𝛽𝑛. To establish the existence of a solution, we analyze the limiting cases as 𝛽𝑛 → 0 and 
𝛽𝑛 → 1. By applying the intermediate value theorem for continuous functions, we show that the equation admits a positive solution. 
This, in turn, determines the equilibrium values of the other endogenous variables, confirming the existence of equilibrium. □
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B.5. Proof of Proposition  5

Note that the institutional investor cannot beat the naive individual investors if and only if 
𝜉𝑛

𝜆1 + 𝜉1
≤

𝛹𝑛
𝛹1

. (B.23)

Moreover, following a similar line of reasoning as in the proof of Proposition  3, we can show that 𝛼𝑛𝑜 →
𝜏𝜖

𝜏𝜃+2𝜏𝜖
 and 𝛽𝑛 → 0 (see (36) 

and (37)). Hence, from (33) and (34), we have

𝜋𝑛 =

𝜏𝜖
(𝜏𝜃+𝑛𝜏𝜖 )(𝜆1+𝜉1)

+ 𝛼𝑛𝑜
𝜉𝑛

1
𝜆1+𝜉1

+ (𝑛−1)(1−𝛽𝑛)
𝜉𝑛

> min
{

𝜏𝜖
𝜏𝜃 + 𝑛𝜏𝜖

,
𝜏𝜖

2(𝜏𝜃 + 2𝜏𝜖)(𝑛 − 1)

}

> 0

for all sufficiently small 𝜏𝑢. As a result, we conclude that 𝛽𝑛 → 0 as 𝜏𝑢 → 0. Furthermore, from (33), we have

𝛾 ≥ 𝑛
(

1
𝜉1

+ 𝑛 − 1
𝜉𝑛

)−1
≥ 𝑛

[

𝜏𝜃 + 𝑛𝜏𝜖
𝜌

+
(𝑛 − 1)(𝜏𝜃 + 𝑛𝜏𝜖)

𝜌

]−1
,

as 𝜏𝑢 → 0. Consequently, both 𝛹𝑛 and 𝛹1 tend to one as 𝜏𝑢 → 0.
For the left-hand side of (B.23), we obtain

𝜉𝑛
𝜆1 + 𝜉1

=
𝜉𝑛

𝜉𝑛
(𝑛−1)(1−𝛽𝑛) + 𝜉1

= 1

1
(𝑛−1)(1−𝛽𝑛) +

𝜏𝜃+2𝜏𝜖+
1

1
(𝑛−2)𝜏𝜖

+
𝑧2𝑛
𝜏𝑢

𝜏𝜃+𝑛𝜏𝜖

→
1

1
𝑛−1 + 𝜏𝜃+2𝜏𝜖

𝜏𝜃+𝑛𝜏𝜖

,

where the first equality follows from (35), and the limit follows from 𝜉𝑛 → 𝜌
𝜏𝜃+2𝜏𝜖

. Note that similar to (B.11), 𝑧𝑛 ̸→ 0 as 𝜏𝑢 → 0, and 
𝜉1 =

𝜌
𝜏𝜃+𝑛𝜏𝜖

. Thus, 𝜉𝑛
𝜆1+𝜉1

 is smaller than one if

1
𝑛 − 1

+
𝜏𝜃 + 2𝜏𝜖
𝜏𝜃 + 𝑛𝜏𝜖

> 1,

which is equivalent to
(𝑛2 − 4𝑛 + 2)𝜏𝜖∕𝜏𝜃 < 1.

The conclusion follows immediately. This completes the proof. □

B.6. Proof of Lemma  1

Since each investor has only prior information about the fundamental value and does not infer information from the price, the 
optimal demand functions for institutional investors (𝑙 = 1,… , 𝑘) and naive individual investors (𝑗 = 𝑘 + 1,… , 𝑛) are respectively 
given by

𝑥∗𝑙 =
E(𝜃) − 𝑝
𝜆1 + 𝜉1

= −
𝑝

𝜆1 + 𝜉1
, (B.24)

𝑥∗𝑗 =
E(𝜃) − 𝑝

𝜉𝑛
= −

𝑝
𝜉𝑛

, (B.25)

where 𝜉1 = 𝜉𝑛 = 𝜌Var(𝜃) = 𝜌∕𝜏𝜃 . From (B.24) and (B.25), the market-clearing condition ∑𝑘
𝑙=1 𝑥

∗
𝑙 +

∑𝑛
𝑗=𝑘+1 𝑥

∗
𝑗 + 𝑛𝑢 = 0 simplifies to

−
𝑘𝑝

𝜆1 + 𝜉1
−

(𝑛 − 𝑘)𝑝
𝜉𝑛

+ 𝑛𝑢 = 0,

which leads to the equilibrium price

𝑝 = 𝑛
(

𝑘
𝜆1 + 𝜉1

+ 𝑛 − 𝑘
𝜉𝑛

)−1
𝑢 =∶ 𝛾𝑢.

Furthermore, the price impact parameter satisfies

𝜆1 =
(

𝑘 − 1
𝜆1 + 𝜉1

+ 𝑛 − 𝑘
𝜉𝑛

)−1
.

Then the expected trading profits for an institutional investor (𝑙 = 1,… , 𝑘) are given by

E[(𝜃 − 𝑝)𝑥∗𝑙 ]
(B.24)
=

E[(𝜃 − 𝑝)(E(𝜃) − 𝑝)]
𝜆1 + 𝜉1

=
E[−(𝜃 − 𝛾𝑢)𝛾𝑢]

𝜆1 + 𝜉1
=

𝛾2

(𝜆1 + 𝜉1)𝜏𝑢
.

Similarly, the expected trading profits for a naive individual investor (𝑗 = 𝑘 + 1,… , 𝑛) are given by

E[(𝜃 − 𝑝)𝑥∗𝑗 ]
(B.25)
=

E[(𝜃 − 𝑝)(E(𝜃) − 𝑝)]
𝜉𝑛

=
E[−(𝜃 − 𝛾𝑢)𝛾𝑢]

𝜉𝑛
=

𝛾2

𝜉𝑛𝜏𝑢
.

This completes the proof. □
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