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Abstract
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relative wealth concerns and both normal and non-normal assets. We show that relative

wealth concerns are equivalent to modified risk tolerance parameters across a broad class of
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1 Introduction

The concept of relative wealth concerns, where an agent’s utility derived from their own con-

sumption is influenced by the consumption levels of others, has been a significant topic of

interest in investment and asset pricing since its formalization by Abel (1990) and Gaĺı (1994).

These pioneering studies showed that negative consumption externalities increase marginal

rates of substitution, thereby amplifying the equity risk premium.

Subsequent research expanded on these ideas. Closely related to our paper, Gollier (2004)

considered environments in which agents adjust their marginal utility by conforming (or anti-

conforming) to the strategies of others; Gómez (2007) examined how portfolio choice and asset

prices are affected when agents seek to outperform an exogenous benchmark; Levy and Levy

(2015) studied the mean-variance efficiency and degree of diversification in portfolios selected

using the peer-group reference as the market portfolio.1

We contribute to this literature by studying a two-agent economy in which agents exhibit

relative wealth concerns and face both normally and non-normally distributed asset payoffs.

Preferences are described by CARA utility functions applied to a weighted difference between

their own wealth and that of the other agent.2 Since each agent optimizes their strategy relative

to the competitor’s wealth, we analyze equilibria in two dimensions: the strategic equilibrium

induced by reference-dependent preferences, and the market equilibrium balancing supply and

demand. Our focus lies in characterizing the equilibrium portfolio strategies and the resulting

asset prices.

Our main contributions are the following. First, we show that, even in the presence of

non-normal assets, the market equilibrium for CARA utility maximizers with relative wealth

concerns coincides with that of a hypothetical economy populated by CARA utility maximizers

without relative wealth concerns but with modified risk tolerance parameters. While similar

equivalence results have been noted, for instance, in the consumption-based asset pricing model

1See also Admati and Pfleiderer (1997), Chan and Kogan (2002), DeMarzo et al. (2008), Gebhardt (2011),

Curatola (2017), Qiu (2017). For recent empirical evidence on the role of others for wealth accumulation we

refer the reader to Haliassos (2024).
2See, among others, Breon-Drish (2015), Glebkin et al. (2020), and Chabakauri et al. (2022) for related

analyses of CARA preferences with non-normal payoffs.
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with externalities of Gaĺı (1994) and Gómez (2007), or the continuous-time models with nor-

mally distributed stock returns of Espinosa and Touzi (2015) and Lacker and Zariphopoulou

(2019), we show that this equivalence holds more broadly for any asset payoff distribution

belonging to the natural exponential family.3

Second, we establish that a version of the two-fund separation theorem holds in the context

of CARA utility maximization with relative wealth concerns. In equilibrium, all agents hold the

same proportion of each risky asset, with portfolio weights proportional to the relative supply of

the assets. This result highlights a strong form of diversification: despite heterogeneity in risk

preferences and concerns over relative wealth, agents share risk in fixed proportions, leading to

homogeneous portfolio compositions.

Finally, we examine the comparative statics of equilibrium strategies, asset prices, and

expected wealth differences with respect to the coefficients of relative wealth concerns. In

particular, we find that when the product of these coefficients, αAαB, is less than one, both

agents are effectively risk-averse and the risky asset earns a positive premium. In contrast, when

αAαB exceeds one (implying that at least one agent places greater weight on the other’s wealth

than on their own), agents behave as risk-seekers and the risky asset offers a negative premium.

As a consequence, agents’ expected wealth is increasing with their degree of relative wealth

concerns when αAαB < 1, but decreasing when αAαB > 1, everything else being constant.

The rest of the paper is structured as follows. In Section 2, we introduce CARA preferences

with relative wealth concerns and study a baseline model with a single normally distributed

security. Extended models with a binomially distributed asset and more general payoff struc-

tures are discussed in Section 3 and Section 4, respectively. Section 5 concludes. Proofs are

provided in the Appendix.

3The natural exponential family includes the normal distribution, the Poisson distribution, the gamma

distribution, and the binomial distribution. See Section 4 for details.
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2 Baseline model: Normally distributed asset

The economy consists of two agents, labelled as A and B, with preferences described by a

CARA utility function with relative wealth concerns:

uA

(
WA,WB

)
= − exp

(
− 1

γA

(
WA − αAWB

))
,

uB

(
WB,WA

)
= − exp

(
− 1

γB

(
WB − αBWA

))
,

(1)

where WA,WB indicate the final wealths, γA, γB are coefficients of risk tolerance (inverse of risk

aversion), and αA, αB > 0 are coefficients of relative wealth concerns.4

A key feature of the specification in (1) is that the preferences and, therefore, the associated

optimal strategy, of agent A depend on the strategy of agent B through the resulting terminal

wealth of agent B, and vice versa. This succinctly reflects the idea that agents evaluate their

wealth (or consumption) relatively to their peers or a certain benchmark. For exponential

utilities, such comparison is done in terms of dollar amounts, whereas with power utilities

comparisons are typically made in terms of returns.

Remark 1. In this context, A and B can also be interpreted as two competing groups of agents,

with the agents within each group being symmetric. More precisely, agents in group A consider

the weighted average wealth α̃AWA+(1− α̃A)WB as the benchmark with a coefficient of relative

wealth concerns βA. That is, the utility of each agent in group A is given by

− exp

(
− 1

γA

(
WA − βA(α̃AWA + (1− α̃A)WB)

))
= − exp

(
− 1

γA/(1− βAα̃A)

(
WA − βA(1− α̃A)

1− βAα̃A

WB

))
,

which is a special case of the model setting (1) with the interpretation that γA
1−βAα̃A

is the risk

tolerance coefficient and βA(1−α̃A)
1−βAα̃A

is the coefficient of relative wealth concerns of agents in group

A. A similar justification also applies to group B.

4Several papers have looked at analogous preferences. In particular, Garcia and Strobl (2011) and Guo

and Lou (2023) considered the case in which each agent compares her/his wealth with the average wealth in

an economy populated by a continuum of agents, while Frei and Dos Reis (2011), Espinosa and Touzi (2015),

Lacker and Zariphopoulou (2019), and Liang et al. (2023) studied relative performance with respect to the

(arithmetic) average performance of n other agents, as well as the mean-field limit for when the number of

agents n goes to infinity.

4



We start by considering a baseline model in which the investment opportunities are repre-

sented by one risky asset (stock) with normally distributed payoff and one risk-free asset. The

risky asset is in fixed supply of z1 units with price p1, which yields a payoff ṽ ∼ N (µ, σ2), while

the risk-free asset has a perfectly elastic supply with price and interest normalized to 1. Agents

are assumed to have symmetric information and to agree on the prior distribution of the stock.

Payoffs are realized at time t = 1.

We denote by θi,1 the units of the risky asset bought by agent i = A,B at time t = 0.

Assuming zero initial wealth for both agents,5 the final wealth is Wi = θi,1(ṽ − p1). We

sometimes write W
θi,1
i , i = A,B, to emphasize the dependence of the final wealth on the chosen

strategy.

In this setting, equilibria are characterized by a pair of trading strategies (θ∗A,1, θ
∗
B,1) and a

price p∗1 that satisfy the following conditions:

(i) Each investor selects a trading strategy that maximizes their CARA expected utility with

relative wealth concerns, given a fixed strategy of the other investor. Formally,

θ∗A,1 = argmax
θA,1

E
[
− exp

(
− 1

γA

(
W

θA,1

A − αAW
θ∗B,1

B

))]
,

θ∗B,1 = argmax
θB,1

E
[
− exp

(
− 1

γB

(
W

θB,1

B − αBW
θ∗A,1

A

))]
.

(ii) The market clears, that is,

θ∗A,1 + θ∗B,1 = z1.

Conditions (i) and (ii) imply that an equilibrium must have two dimensions: a Nash equilib-

rium in agents’ strategies, induced by reference dependent preferences, and a market equilibrium

between supply and demand. The following proposition characterizes such an equilibrium and

shows that it exists.

5This is a common assumption for CARA utility maximization, as optimal demands for risky asset allocation

do not depend on initial wealth. In the presence of relative wealth concerns, this assumption can be interpreted

as a normalization of wealth relative to the peer, ensuring that the analysis is not distorted by absolute wealth

levels.
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Proposition 1. A unique, linear equilibrium exists, where the equilibrium price of the risky

asset is

p∗1 = µ− z1 (1− αAαB)σ
2

γA(1 + αB) + γB(1 + αA)
, (2)

and the equilibrium allocations are given by

θ∗A,1 =
µ− p1
σ2

(
γA + αAγB
1− αAαB

)
=

z1 (γA + αAγB)

γA(1 + αB) + γB(1 + αA)
,

θ∗B,1 =
µ− p1
σ2

(
γB + αBγA
1− αAαB

)
=

z1 (γB + αBγA)

γA(1 + αB) + γB(1 + αA)
.

(3)

Let us comment on this result. First, we note that the equilibrium allocations in (3) are

equivalent to the optimal investments of two agents without relative wealth concerns and with

implied risk tolerance coefficients

γ̃A :=
γA + αAγB
1− αAαB

and γ̃B :=
γB + αBγA
1− αAαB

. (4)

In Section 3, we will show that the equivalence between an economy with relative wealth con-

cerns and a hypothetical economy without relative wealth concerns continues to hold with the

same implied risk tolerance coefficients for assets with skewed payoffs.

Assuming for now that αA and αB are positive, we observe the following. When αAαB <

1, both agents are effectively risk-averse and the risky asset carries a positive premium; see

Equation (2). Conversely, when αAαB > 1 –which arises when at least one agent places greater

weight on the other agent’s wealth than on their own– the agents exhibit risk-seeking behavior,

and the risky asset offers a negative premium. Finally, as αAαB tends to 1 agents become

increasingly risk tolerant, thus the market moves towards a homogeneous-holdings equilibrium

in which each agent holds the same fraction of the asset supply, regardless of the asset’s price:

θ∗A
∣∣
αAαB=1

= θ∗B
∣∣
αAαB=1

=
z1
2
.

In this case, the market-clearing price is given by the mean payoff, p∗1 = µ.6

We, next, study the effect of the coefficient of relative wealth concerns on the optimal

allocation and equilibrium price.

6While this is not pointed out in their paper, one can show that a similar consequence can be derived from

Proposition 1 in Garcia and Strobl (2011) when the fraction of informed (versus uninformed) investors is set

equal to 0; cf. the proof of Proposition 1, together with Eq. (4), therein.
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Proposition 2. The equilibrium strategy of agent A:

(i) strictly increases (decreases) in αA if and only if γB + αBγA > (<) 0;

(ii) strictly increases (decreases) in αB if and only if γA + αAγB > (<) 0.

Further, the equilibrium price

(iii) strictly increases (decreases) in αA if and only if αBγA + αBγB + α2
BγA + γA > (<) 0;

(iv) strictly decreases (increases) in αB if and only if αAγA + αAγB + α2
AγB + γB > (<) 0.

Mutatis mutandis, the comparative statics for the equilibrium strategy of agent B hold equiv-

alently.

The ordinal relationship of expected wealth of the two agents is given in the proposition

below.

Proposition 3. The ordinal relationship of expected wealth of the two agents is determined by

their preference parameters as follows:
E [WA] > E [WB] , if (1− αAαB) ((γA + αAγB)− (γB + αBγA)) > 0,

E [WA] = E [WB] , if (1− αAαB) ((γA + αAγB)− (γB + αBγA)) = 0,

E [WA] < E [WB] , if (1− αAαB) ((γA + αAγB)− (γB + αBγA)) < 0.

We conclude this section with a proposition that characterizes how the equilibrium wealth

gap depends on the coefficients of relative wealth concerns, under the assumption that agents

have identical risk tolerance.7

Proposition 4. Assume that the two agents have identical coefficients of risk tolerance, i.e.,

γA = γB =: γ. Then:

(i) If αAαB < 1, then E[WA −WB] increases with αA, and is positive (negative) when αA >

(<) αB;

7For a dedicated analysis on the impact of relative wealth concerns on wealth gap in the presence of asym-

metric information, we refer to Guo and Lou (2023).

7



(ii) If αAαB > 1, then E[WA −WB] decreases with αA, and is negative (positive) when αA >

(<) αB;

(iii) If αAαB = 1, or αA = αB, then E[WA −WB] = 0.

In addition, for a fixed αB:

(iv) E[WA −WB] strictly increases (decreases) for αA < (>) α∗
A :=

α2
B + αB + 2

3αB + 1
;

(v) E[WA −WB] reaches its maximum at α∗
A, where it is equal to

E[WA −WB]
∣∣
αA=α∗

A
=

z21σ
2

γ
× (αB − 1)2

8(αB + 1)
.

In line with the discussion after Proposition 1, we consider three distinct scenarios. When

αAαB < 1, as previously noted, the risky asset offers a positive premium. In this case, agent A

benefits from increasing her/his concern for relative wealth, as this induces greater risk-taking

(per Eq. (4)) and raises her/his expected wealth. On the contrary, when αAαB > 1, the risky

asset offers a negative premium, and agent A’s expected wealth decreases as she/he becomes

more concerned about relative wealth. Finally, when αAαB = 1, or when the two agents are

perfectly symmetric (αA = αB), the expected wealth gap vanishes, as the agents match each

other’s behavior exactly.

3 Extended model: Skewed asset

In this section, we present an extension of the baseline model in which the investment oppor-

tunities include a positively skewed asset. Following Barberis and Huang (2008), we assume a

binomially distributed payoff L̃ ∼ (J, q; 0, 1− q) that is uncorrelated to the existing asset ṽ. In

other words, akin to a lottery ticket or a binary call option, L̃ pays J with probability q ∈ (0, 1)

and 0 otherwise.

We denote by θi,1 and θi,2 the allocation of agent i = A,B in the securities with payoff ṽ

and L̃, respectively. Prices are denoted by p1 and p2, and the fixed supplies are denoted by z1

and z2.

Equilibria are now characterized by a 4-tuple of trading strategies (θ∗A,1, θ
∗
A,2, θ

∗
B,1, θ

∗
B,2) and

prices (p∗1, p
∗
2) satisfying the following conditions:
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(i) Each investor selects a trading strategy that maximizes her/his CARA expected utility

with relative wealth concerns, given a fixed strategy of the other investor. The optimiza-

tion problems are revised as follows:

max
θA,1, θA,2

E
[
− exp

(
− 1

γA
(WA − αAWB)

)]
,

max
θB,1, θB,2

E
[
− exp

(
− 1

γB
(WB − αBWA)

)]
,

where Wi = θi,1(ṽ − p1) + θi,2
(
L̃− p2

)
, i = A,B.

(ii) The market clears for each asset, i.e.,

θ∗A,1 + θ∗B,1 = z1,

θ∗A,2 + θ∗B,2 = z2.

The following proposition characterizes the equilibrium and shows that it exists.

Proposition 5. A unique equilibrium exists, where the equilibrium prices of the risky assets

are

p∗1 = µ− z1 (1− αAαB)σ
2

γA(1 + αB) + γB(1 + αA)
,

p∗2 =
qJ

q + (1− q) exp

(
z2J(1− αAαB)

γA(1 + αB) + γB(1 + αA)

) ,
(5)

and the equilibrium allocations in the risky assets are given by

θ∗A,1 =
µ− p1
σ2

(
γA + αAγB
1− αAαB

)
=

z1 (γA + αAγB)

γA(1 + αB) + γB(1 + αA)
,

θ∗A,2 =
1

J

(
γA + αAγB
1− αAαB

)
log

(
q(J − p2)

(1− q)p2

)
=

z2(γA + αAγB)

γA(1 + αB) + γB(1 + αA)
,

θ∗B,1 =
µ− p1
σ2

(
γB + αBγA
1− αAαB

)
=

z1 (γB + αBγA)

γA(1 + αB) + γB(1 + αA)
,

θ∗B,2 =
1

J

(
γB + αBγA
1− αAαB

)
log

(
q(J − p2)

(1− q)p2

)
=

z2(γB + αBγA)

γA(1 + αB) + γB(1 + αA)
.

(6)
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An interesting outcome of the model is the following corollary, which shows that, in the

absence of frictions, agents’ portfolio diversification levels are identical.8

Corollary 1. Observing in (6) the strategies evaluated at the market-clearing price, it turns

out that, in equilibrium, agents with possibly different levels of risk attitudes and relative wealth

concerns own portfolios with similar composition. Namely, the ratio between the number of

shares held in each asset by A and B is equal to the ratio of the respective supplies:

θ∗A,1

θ∗A,2

=
θ∗B,1

θ∗B,2

=
z1
z2
.

The classical two-fund separation theorem states that all mean-variance investors hold a

combination of the risk-free asset and a single fund of risky assets, the tangency portfolio.

Portfolio choice thus separates into identifying the optimal portfolio of risky assets and deter-

mining the allocation between the risky fund and the risk-free asset, which might differ across

investors due to heterogeneity in their risk tolerance. Corollary 1 shows that the number of

shares held in each asset is the same for both investors. This can thus be interpreted as an

extension of the two-fund separation theorem to a CARA setting with relative wealth concerns.

From (6), we observe that relative wealth concerns lead to exactly the same change in

implied risk tolerance (see (4)) for both normally and binomially distributed assets. That is,

restricting to the more standard case with αAαB < 1, agents with exponential utility who

are concerned by peers increase their risk tolerance consistently across assets, regardless of the

skewness. One could then wonder whether this is true for more general distributions. In Section

4, we briefly argue that this is the case for at least all distributions in the natural exponential

family (NEF).9

8In a model with “keeping up with the Joneses” utility of consumption, Gómez (2007) shows that no non-

diversification equilibria are possible when the utility function u(ci) of each agent i satisfies the condition

− u′(ci)

u′′(ci)
= Ai + Bci, for constants Ai and B; see Proposition 1 therein. As CARA utilities satisfy the above

condition, our result characterizes the (non-diversification) equilibrium in the case of multiple assets with

different distributions.
9See Morris (1982) and Chapter 3 in Casella and Berger (2002) for a description of the NEF, and also Breon-

Drish (2015), who studies a noisy rational expectations model in which the risky asset follows (conditionally on

the signal received by the agent) a distribution from a related exponential family.
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Next, we study the effect of the coefficient of relative wealth concerns on the optimal allo-

cations and equilibrium price of the skewed security. The results for the normally distributed

security carry forward from Proposition 2.

Proposition 6. The equilibrium strategy of agent A in the skewed asset:

(i) strictly increases (decreases) in αA if and only if γB + αBγA > (<) 0;

(ii) strictly increases (decreases) in αB if and only if γA + αAγB > (<) 0.

Further, the equilibrium price of the skewed security:

(iii) strictly increases (decreases) in αA if and only if αBγA + αBγB + α2
BγA + γA > (<) 0;

(iv) strictly decreases (increases) in αB if and only if αAγA + αAγB + α2
AγB + γB > (<) 0.

The comparative statics for the equilibrium strategy of agent B hold equivalently, with the

due changes in notation.

Remark 2. Echoing our earlier comment about the changes in risk tolerance, we note that the

conditions in Proposition 6 are equal to those in Proposition 2.

Interestingly, the ordinal relationship of expected wealth of the two agents is again fully

determined by their preference parameters and the same as in the baseline model (Proposition

3).

Proposition 7. The ordinal relationship of expected wealth of the two agents is determined by

their preference parameters as follows:
E [WA] > E [WB] , if (1− αAαB) ((γA + αAγB)− (γB + αBγA)) > 0,

E [WA] = E [WB] , if (1− αAαB) ((γA + αAγB)− (γB + αBγA)) = 0,

E [WA] < E [WB] , if (1− αAαB) ((γA + αAγB)− (γB + αBγA)) < 0.

Similar to Proposition 4, the next result characterizes the dependence of the wealth gap on

relative wealth concerns when agents have the same risk tolerance. The conclusion mirrors the

baseline case.
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Proposition 8. Assume that the two agents have identical coefficients of risk tolerance, i.e.,

γA = γB = γ. Then:

(i) If αAαB < 1, then E[WA −WB] increases with αA, and is positive (negative) when αA >

(<) αB;

(ii) If αAαB > 1, then E[WA −WB] decreases with αA, and is negative (positive) when αA >

(<) αB;

(iii) If αAαB = 1, or αA = αB, then E[WA −WB] = 0.

4 Payoffs with distribution from a natural exponential

family

In this final section, we characterize the market equilibrium when assets belong to the natural

exponential family (NEF). While a complete analysis is beyond the scope herein, we show that

some of the main features identified in previous sections extend to this more general setting.

First, we recall that, for a given parameter η, the natural exponential family includes dis-

tributions whose probability density function can be expressed as

f(x | η) = h(x) exp
(
ηx− g(η)

)
,

with known functions h(x) and g(η).

Now consider two uncorrelated risky assets X̃1 and X̃2, with price pX̃1 and pX̃2 , respectively,

following a distribution within the NEF. By using the moment generating function of X̃1 and

X̃2,

E
[
exp

(
uX̃j

)]
= exp

(
gj(ηj + u)− gj(ηj)

)
, j = 1, 2, u ∈ R,

it is easy to show that the demand functions of agent A and B for these assets are given by

θA,j = γA

(
ηj − (g′j)

−1(pX̃j)
)
+ αAθB,j,

θB,j = γB

(
ηj − (g′j)

−1(pX̃j)
)
+ αBθA,j,

where the assumption is that g′j, j = 1, 2, is invertible and the inverse well-defined at pX̃j .
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Therefore, the equilibrium allocations are

θ∗A,j =
γA + αAγB
1− αAαB

(
ηj − (g′j)

−1(pX̃j)
)
,

θ∗B,j =
γB + αBγA
1− αAαB

(
ηj − (g′j)

−1(pX̃j)
)
,

which shows that the implied coefficients of risk tolerance are equivalent for both assets.

Furthermore, supposing that the two assets are supplied in z1 and z2 units, the market-

clearing prices are derived as follows:

p∗
X̃j = (g′j)

(
ηj −

zj(1− αAαB)

γA + γB + αAγB + αBγA

)
.

5 Concluding remarks

Neighbors, peers, and other exogenous benchmarks have proved to exert a substantial influ-

ence on individual wealth accumulation, both through their characteristics and their behavior

(Haliassos (2024)). Within this context, we examine the role of relative wealth concerns in a

two-agent economy with CARA preferences and multiple risky assets. Our analysis shows that,

in equilibrium, optimal investment choices and the ranking of expected wealth outcomes are

entirely driven by the preference parameters. In particular, if both agents are only partly con-

cerned about the other agent’s wealth, risky assets offer a positive premium and thus greater

risk-taking leads to higher expected wealth; conversely, if at least one agent is significantly

more concerned with the other agent’s wealth than her/his own, risky assets turn out to offer

a negative premium and thus more risk-taking leads to a lower expected wealth. Moreover, we

found that a two-fund separation holds, whereby agents select identical portfolio compositions

-characterized by constant allocation ratios across assets- regardless of the statistical properties

of asset returns and heterogeneity in agents’ risk tolerance. To further refine these insights, fu-

ture research could explore richer economic environments, for instance by adopting behavioral

preferences or agent heterogeneity.
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Appendix A. Proofs

A.1 Proof of Proposition 1

The problem being symmetric, we show the solution only from the point of view of agent A.

First, we write the relative wealth of agent A:

WA − αAWB = θAṽ − θAp1 − αA (θB ṽ − θBp1)

= (θA − αAθB) (ṽ − p1) .

By the assumption of normality of the payoff v, it follows that

WA − αAWB ∼ N
(
(θA − αAθB) (µ− p1), (θA − αAθB)

2 σ2
)
.

The maximization problem of agent A, for a fixed strategy of agent B, reads:

max
θA

E
[
− exp

(
− 1

γA
(WA − αAWB)

)]
=max

θA
− exp

(
− 1

γA

(
E [WA − αAWB]−

1

2γA
Var [WA − αAWB]

))
=max

θA
− exp

(
− 1

γA

(
(θA − αAθB) (µ− p1)−

1

2γA
(θA − αAθB)

2 σ2

))
.

Applying the first-order condition for optimality, we obtain the optimal strategy of agent

A, given the strategy of agent B:

θA =
µ− p1
1

γA
σ2

+ αAθB. (A.1)

Specularly, the optimal strategy of agent B, given the strategy of agent A, is

θB =
µ− p1
1

γB
σ2

+ αBθA. (A.2)

Replacing (A.1) into (A.2) leads to the unique equilibrium allocation:

θ∗A =
µ− p1
1

γA
σ2

1 + αA
γB
γA

1− αAαB

 ,

θ∗B =
µ− p1
1

γB
σ2

1 + αB
γA
γB

1− αBαA

 .
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Finally, from the market-clearing condition, and recalling that the risky asset is supplied in

z1 units, we obtain the equilibrium price:

θ∗A + θ∗B = z1 ⇐⇒ µ− p1
1

γA
σ2

1 + αA
γB
γA

1− αAαB

+
µ− p1
1

γB
σ2

1 + αB
γA
γB

1− αBαA

 = z1

⇐⇒ p1 = µ− z1 (1− αAαB)σ
2

γA(1 + αB) + γB(1 + αA)
.

A.2 Proof of Proposition 2

To study the effect of the coefficient of relative wealth concerns on the quantities of interest,

we compute the following first-order derivatives:

∂θ∗A
∂αA

=
z1γB (γB + αBγA)(

γA + γB + αAγB + αBγA
)2

∂θ∗A
∂αB

= − z1γA (γA + αAγB)(
γA + γB + αAγB + αBγA

)2 ,
∂p1
∂αA

= σ2 αB

(
γA + γB + γAαB

)
+ γB(

γA + γB + αAγB + αBγA
)2 ,

∂p1
∂αB

= σ2 αA

(
γA + γB + γBαA

)
+ γA(

γA + γB + αAγB + αBγA
)2 .

The claim of the proposition follows immediately.

A.3 Proof of Proposition 3

From the equilibrium price and allocations in (2)-(3), we compute

E [WA −WB] =
(µ− p∗1)

2

σ2
× γA + αAγB − γB − αBγA

1− αAαB

= z21σ
2 × (1− αAαB) (γA + αAγB − γB − αBγA)

(γA + γB + γAαB + γBαA)
2 .

(A.3)

The claim easily follows.
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A.4 Proof of Proposition 4

Setting γA = γB =: γ in (A.3), we have

E [WA −WB] =
z21σ

2

γ
× (1− αAαB) (αA − αB)

(αA + αB + 2)2
.

Claims (i)-(iii) follow immediately.

Next, keeping αB fixed, we assess

∂E [WA −WB]

∂αA

=
z21σ

2

γ
× (αB + 1)(−αA(3αB + 1) + α2

B + αB + 2)

(αA + αB + 2)3
,

from which claims (iv)-(v) also follow easily.

A.5 Proof of Proposition 5

As the problem is symmetric, we can consider the point of view of agent A and write her/his

relative wealth as follows:

WA − αAWB = θA,1ṽ + θA,2L̃− θA,1p1 − θA,2p2

− αA

(
θB,1ṽ + θB,2L̃− θB,1p1 − θB,2p2

)
= (θA,1 − αAθB,1) (ṽ − p1) + (θA,2 − αAθB,2)

(
L̃− p2

)
.

If v and L̃ are assumed to be independent, we can separate the expectation of relative wealth

as follows:

max
θA,1,θA,2

E
[
− exp

(
− 1

γA

(
(θA,1 − αAθB,1) (ṽ − p1) + (θA,2 − αAθB,2)

(
L̃− p2

)))]
= max

θA,1,θA,2

−E
[
exp

(
− 1

γA
(θA,1 − αAθB,1) (ṽ − p1)

)]
× E

[
exp

(
− 1

γA
(θA,2 − αAθB,2)

(
L̃− p2

))]
.

(A.4)

We dealt with the first expectation in the proof of Proposition 1. For the second, we have:

E
[
exp

(
− 1

γA
(θA,2 − αAθB,2)

(
L̃− p2

))]
=exp

(
1

γA
(θA,2 − αAθB,2) p2

)
E
[
exp

(
− 1

γA
(θA,2 − αAθB,2) L̃

)]
=exp

(
1

γA
(θA,2 − αAθB,2) p2

)(
q exp

(
− 1

γA
(θA,2 − αAθB,2) J

)
+ 1− q

)
.
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We now conjecture (and later verify) that J > p2. Applying the first order condition for

optimality in (A.4), we obtain the optimal strategies of agent A, given the strategies of agent

B:

θA,1 =
µ− p1
1

γA
σ2

+ αAθB,1,

θA,2 =
γA
J

log

(
q(J − p2)

(1− q)p2

)
+ αAθB,2.

(A.5)

Similarly, we can write the optimal strategies for agent B, given the strategies of agent A:

θB,1 =
µ− p1
1

γB
σ2

+ αBθA,1,

θB,2 =
γB
J

log

(
q(J − p2)

(1− q)p2

)
+ αBθA,2.

(A.6)

Replacing (A.5) into (A.6) leads to the unique equilibrium allocations:

θ∗A,1 =
µ− p1

σ2(1− αAαB)

(
γA + αAγB

)
,

θ∗B,1 =
µ− p1

σ2(1− αAαB)

(
γB + αBγA

)
,

θ∗A,2 =
1

J(1− αAαB)
(γA + αAγB) log

(
q(J − p2)

(1− q)p2

)
,

θ∗B,2 =
1

J(1− αAαB)
(γB + αBγA) log

(
q(J − p2)

(1− q)p2

)
.

From the market-clearing condition, and recalling that the assets are supplied in z1 and z2

units, respectively, we obtain equilibrium prices:

z1 = θ∗A,1 + θ∗B,1 =
µ− p1
1

γA
σ2

1 + αA
γB
γA

1− αAαB

+
µ− p1
1

γB
σ2

1 + αB
γA
γB

1− αBαA


⇐⇒ p1 = µ− z1 (1− αAαB)σ

2

γA(1 + αB) + γB(1 + αA)
,

z2 = θ∗A,2 + θ∗B,2 =
1

J(1− αAαB)
(γA + γB + αAγB + αBγA) log

(
q(J − p2)

(1− q)p2

)
,

⇐⇒ p2 =
qJ

q + (1− q) exp

(
z2J(1− αAαB)

γA + γB + αAγB + αBγA

) .
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Finally, it remains to verify that J > p2. To do so, we need to check that

J >
qJ

q + (1− q) exp

(
z2J(1− αAαB)

γA + γB + αAγB + αBγA

) .

Since J > 0, this inequality is equivalent to

q + (1− q) exp

(
z2J(1− αAαB)

γA + γB + αAγB + αBγA

)
> q,

which clearly holds for any q ∈ (0, 1).

A.6 Proof of Proposition 6

Similarly to Proposition 2, we compute the following first-order derivatives:

∂θ∗A,2

∂αA

=
z2 (γ

2
B + αAγAγB)

(γA + γB + αAγB + αBγA)
2 ,

∂θ∗A,2

∂αB

= − z2 (γ
2
A + αAγAγB)

(γA + γB + αAγB + αBγA)
2 ,

∂p∗2
∂αA

= − qJ(
q + (1− q) exp

(
z2J(1− αAαB)

γA + γB + αAγB + αBγA

))2

× (1− q) exp

(
z2J(1− αAαB)

γA + γB + αAγB + αBγA

)
× −z2J (αB (γA + γB + αBγA) + γB)

(γA + γB + αAγB + αBγA)
2 ,

∂p∗2
∂αB

= − qJ(
q + (1− q) exp

(
z2J(1− αAαB)

γA + γB + αAγB + αBγA

))2

× (1− q) exp

(
z2J(1− αAαB)

γA + γB + αAγB + αBγA

)
× −z2J (αA (γA + γB + αAγB) + γA)

(γA + γB + αAγB + αBγA)
2 .

The claim of the proposition follows immediately.

18



A.7 Proof of Proposition 7

From the equilibrium prices and allocations in (5)-(6), we compute

E [WA −WB] =

(
(µ− p∗1)

2

σ2
+

1

J
log

(
q(J − p∗2)

(1− q)p∗2

)
(qJ − p∗2)

)
× γA + αAγB − γB − αBγA

1− αAαB

= z21σ
2 × (1− αAαB) (γA + αAγB − γB − αBγA)

(γA + γB + γAαB + γBαA)
2

+ z2qJ × γA + αAγB − γB − αBγA
γA + γB + αAγB + αBγA

×

1− 1

q + (1− q) exp

(
z2J(1− αAαB)

γA + γB

)
 .

(A.7)

Note that

sign (1− αAαB) = sign

z2qJ

1− 1

q + (1− q) exp

(
z2J(1− αAαB)

γA + γB

)

 .

We therefore have that

sign (E [WA −WB]) = sign ((1− αAαB) (γA + αAγB − γB − αBγA))

as claimed.

A.8 Proof of Proposition 8

Setting γA = γB =: γ in (A.7), we have

E [WA −WB] =
z21σ

2

γ
× (1− αAαB) (αA − αB)

(2 + αA + αB)
2

+ z2qJ × αA − αB

2 + αA + αB

×

1− 1

q + (1− q) exp

(
z2J(1− αAαB)

2γ

)
 .

Claims (i)-(iii) follow immediately.
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